Why does this expression simplify as such?General linear hypothesis test statistic: equivalence of two expressionsSlope Derivation for the variance of a least square problem via Matrix notationCovariance of OLS estimator and residual = 0. Where is the mistake?A doubt on SUR modelWhy trace of $I−X(X′X)^-1X′$ is $n-p$ in least square regression when the parameter vector $beta$ is of p dimensions?Getting the posterior for Bayesian linear regression with a flat priorDistribution of coefficients in linear regressionFitted values and residuals: are they random vectors?Proving that Covariance of residuals and errors is zeroWhat is the relationship of long and short regression when we have an intercept?

Why Shazam when there is already Superman?

What is going on with gets(stdin) on the site coderbyte?

Review your own paper in Mathematics

How could a planet have erratic days?

How to get directions in deep space?

A variation to the phrase "hanging over my shoulders"

How can ping know if my host is down

Will number of steps recorded on FitBit/any fitness tracker add up distance in PokemonGo?

Why is the Sun approximated as a black body at ~ 5800 K?

Has the laser at Magurele, Romania reached a tenth of the Sun's power?

What is the English pronunciation of "pain au chocolat"?

How to make money from a browser who sees 5 seconds into the future of any web page?

I found an audio circuit and I built it just fine, but I find it a bit too quiet. How do I amplify the output so that it is a bit louder?

Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?

Is there any evidence that Cleopatra and Caesarion considered fleeing to India to escape the Romans?

Why do ¬, ∀ and ∃ have the same precedence?

How to explain what's wrong with this application of the chain rule?

Delete multiple columns using awk or sed

Is my low blitz game drawing rate at www.chess.com an indicator that I am weak in chess?

Why can't the Brexit deadlock in the UK parliament be solved with a plurality vote?

Is this toilet slogan correct usage of the English language?

Why does Carol not get rid of the Kree symbol on her suit when she changes its colours?

Giving feedback to someone without sounding prejudiced

Is it necessary to use pronouns with the verb "essere"?



Why does this expression simplify as such?


General linear hypothesis test statistic: equivalence of two expressionsSlope Derivation for the variance of a least square problem via Matrix notationCovariance of OLS estimator and residual = 0. Where is the mistake?A doubt on SUR modelWhy trace of $I−X(X′X)^-1X′$ is $n-p$ in least square regression when the parameter vector $beta$ is of p dimensions?Getting the posterior for Bayesian linear regression with a flat priorDistribution of coefficients in linear regressionFitted values and residuals: are they random vectors?Proving that Covariance of residuals and errors is zeroWhat is the relationship of long and short regression when we have an intercept?













3












$begingroup$


I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



$$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



    $$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



    In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



      $$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



      In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.










      share|cite|improve this question











      $endgroup$




      I'm reading through my professor's lecture notes on the multiple linear regression model and at one point he writes the following:



      $$E[(b-beta)e']=E[(X'X)^-1epsilonepsilon'M_[X]]. $$



      In the above equation, $b$, $beta$, $e$, and $epsilon$ are all vectors, $X$ is a regressor matrix and $M$ is the residual maker matrix. In general, I have no idea why these expressions are equivalent, and I'm particularly confused at how the $e$ vector disappears and the $epsilon$ vector appears.







      regression multiple-regression linear-model residuals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago









      Benjamin Christoffersen

      1,264519




      1,264519










      asked 4 hours ago









      DavidDavid

      24311




      24311




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            2 hours ago


















          3












          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            2 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            2 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398797%2fwhy-does-this-expression-simplify-as-such%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            2 hours ago















          3












          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            2 hours ago













          3












          3








          3





          $begingroup$

          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$






          share|cite|improve this answer









          $endgroup$



          I am assuming $b$ is the OLS estimate of $beta$ and $e$ is the corresponding estimate of $epsilon$. Also I believe you have a typo above in your expression, as there should be $X'$ in front of $epsilon epsilon'$ and behind $(X'X)^-1$.



          Start with the definition of $b$:
          $$b=(X'X)^-1X'Y.$$
          Replacing $Y$ with $Xbeta+epsilon$ in our expression above, we get
          $$b=(X'X)^-1X'(Xbeta+epsilon)=beta+(X'X)^-1X'epsilon.$$
          It follows that
          $$b-beta = (X'X)^-1X'epsilon$$



          Now turn to the defintion of $e$:
          $$e=Y-hatY=Y-Xb=Y-X(X'X)^-1X'Y.$$



          Notice $X(X'X)^-1X'$ is the projection matrix for $X$, which we will denote with $P_[X]$.
          Replacing this in our expression for $e,$ we get
          $$e=(I-P_[X])Y=M_[X]Y.$$
          Replacing $Y$ in the expression above with $Xbeta+epsilon$, we get
          $$e=M_[X](Xbeta+epsilon)=M_[X]epsilon,$$
          since $M_[X]X$ is a matrix of zeros.



          Post-multiplying $b-beta$ with $e'$, we get
          $$(b-beta)e'=(X'X)^-1X'epsilon epsilon' M_[X],$$
          since $e'=epsilon'M_[X].$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          dlnBdlnB

          81011




          81011











          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            2 hours ago
















          • $begingroup$
            Ah. The key thing I was missing was what you wrote in the last line.
            $endgroup$
            – David
            2 hours ago















          $begingroup$
          Ah. The key thing I was missing was what you wrote in the last line.
          $endgroup$
          – David
          2 hours ago




          $begingroup$
          Ah. The key thing I was missing was what you wrote in the last line.
          $endgroup$
          – David
          2 hours ago













          3












          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            2 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            2 hours ago















          3












          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            2 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            2 hours ago













          3












          3








          3





          $begingroup$

          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.






          share|cite|improve this answer









          $endgroup$



          Assuming that the coefficient estimator $b$ is calculated by OLS estimation, you have:



          $$beginequation beginaligned
          b-beta
          &= (X'X)^-1 X'y - beta \[6pt]
          &= (X'X)^-1 X'(X beta + epsilon)- beta \[6pt]
          &= (X'X)^-1 (X'X) beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= beta + (X'X)^-1 X' epsilon - beta \[6pt]
          &= (X'X)^-1 X' epsilon. \[6pt]
          endaligned endequation$$



          Presumably $e$ is the residual vector (different to the error vector $epsilon$) so we have $e = M_[X] Y = M_[X] epsilon$. Substituting this vector gives:



          $$beginequation beginaligned
          (b-beta) e'
          &= (X'X)^-1 X' epsilon (M_[X] epsilon)' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]' \[6pt]
          &= (X'X)^-1 X' epsilon epsilon' M_[X]. \[6pt]
          endaligned endequation$$



          (The last step follows from the fact that $M_[X]$ is a symmetric matrix.) So the expression given by your professor is missing the $X'$ term.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          BenBen

          26.8k230124




          26.8k230124







          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            2 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            2 hours ago












          • 2




            $begingroup$
            Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
            $endgroup$
            – dlnB
            2 hours ago






          • 1




            $begingroup$
            @dlnb: Jinx! Buy me a coke!
            $endgroup$
            – Ben
            2 hours ago







          2




          2




          $begingroup$
          Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
          $endgroup$
          – dlnB
          2 hours ago




          $begingroup$
          Nice, I think we both must have been typing our answers at the same time. I'm glad you also found the mistake.
          $endgroup$
          – dlnB
          2 hours ago




          1




          1




          $begingroup$
          @dlnb: Jinx! Buy me a coke!
          $endgroup$
          – Ben
          2 hours ago




          $begingroup$
          @dlnb: Jinx! Buy me a coke!
          $endgroup$
          – Ben
          2 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398797%2fwhy-does-this-expression-simplify-as-such%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

          Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"

          inputenc: Unicode character … not set up for use with LaTeX The Next CEO of Stack OverflowEntering Unicode characters in LaTeXHow to solve the `Package inputenc Error: Unicode char not set up for use with LaTeX` problem?solve “Unicode char is not set up for use with LaTeX” without special handling of every new interesting UTF-8 characterPackage inputenc Error: Unicode character ² (U+B2)(inputenc) not set up for use with LaTeX. acroI2C[I²C]package inputenc error unicode char (u + 190) not set up for use with latexPackage inputenc Error: Unicode char u8:′ not set up for use with LaTeX. 3′inputenc Error: Unicode char u8: not set up for use with LaTeX with G-BriefPackage Inputenc Error: Unicode char u8: not set up for use with LaTeXPackage inputenc Error: Unicode char ́ (U+301)(inputenc) not set up for use with LaTeX. includePackage inputenc Error: Unicode char ̂ (U+302)(inputenc) not set up for use with LaTeX. … $widehatleft (OA,AA' right )$Package inputenc Error: Unicode char â„¡ (U+2121)(inputenc) not set up for use with LaTeX. printbibliography[heading=bibintoc]Package inputenc Error: Unicode char − (U+2212)(inputenc) not set up for use with LaTeXPackage inputenc Error: Unicode character α (U+3B1) not set up for use with LaTeXPackage inputenc Error: Unicode characterError: ! Package inputenc Error: Unicode char ⊘ (U+2298)(inputenc) not set up for use with LaTeX