Using Rolle's theorem to show an equation has only one real root The Next CEO of Stack OverflowProving number of roots of a function using Rolle's theoremUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Proof polynomial has only one real root.prove to have at least one real root by Rolle's theoremProve that the equation $x + cos(x) + e^x = 0$ has *exactly* one rootProof using Rolle's theoremUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremProve, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root

How to avoid supervisors with prejudiced views?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

TikZ: How to reverse arrow direction without switching start/end point?

Is a distribution that is normal, but highly skewed considered Gaussian?

Rotate a column

What does "Its cash flow is deeply negative" mean?

Domestic-to-international connection at Orlando (MCO)

What connection does MS Office have to Netscape Navigator?

How I can get glyphs from a fraktur font and use them as identifiers?

Poetry, calligrams and TikZ/PStricks challenge

Are police here, aren't itthey?

The past simple of "gaslight" – "gaslighted" or "gaslit"?

What is meant by "large scale tonal organization?"

Is there a way to save my career from absolute disaster?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

Necessary condition on homology group for a set to be contractible

Why does standard notation not preserve intervals (visually)

Why is information "lost" when it got into a black hole?

Prepend last line of stdin to entire stdin

Legal workarounds for testamentary trust perceived as unfair

Is it professional to write unrelated content in an almost-empty email?

Why do airplanes bank sharply to the right after air-to-air refueling?

Make solar eclipses exceedingly rare, but still have new moons

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin



Using Rolle's theorem to show an equation has only one real root



The Next CEO of Stack OverflowProving number of roots of a function using Rolle's theoremUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Proof polynomial has only one real root.prove to have at least one real root by Rolle's theoremProve that the equation $x + cos(x) + e^x = 0$ has *exactly* one rootProof using Rolle's theoremUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremProve, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root










2












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    8 mins ago
















2












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    8 mins ago














2












2








2





$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$





Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?







calculus applications rolles-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 33 mins ago









Eevee Trainer

9,06731640




9,06731640










asked 41 mins ago









blue_eyed_...blue_eyed_...

3,30221755




3,30221755











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    8 mins ago

















  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    8 mins ago
















$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
8 mins ago





$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
8 mins ago











1 Answer
1






active

oldest

votes


















5












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    32 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    30 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    14 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    11 mins ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-an-equation-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    32 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    30 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    14 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    11 mins ago















5












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    32 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    30 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    14 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    11 mins ago













5












5








5





$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$



Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 13 mins ago

























answered 35 mins ago









Eevee TrainerEevee Trainer

9,06731640




9,06731640











  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    32 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    30 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    14 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    11 mins ago
















  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    32 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    30 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    14 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    11 mins ago















$begingroup$
I don't understand the second para.
$endgroup$
– blue_eyed_...
32 mins ago




$begingroup$
I don't understand the second para.
$endgroup$
– blue_eyed_...
32 mins ago












$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
30 mins ago





$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
30 mins ago





1




1




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– blue_eyed_...
25 mins ago




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– blue_eyed_...
25 mins ago












$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
14 mins ago




$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
14 mins ago












$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– blue_eyed_...
11 mins ago




$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– blue_eyed_...
11 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-an-equation-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"

inputenc: Unicode character … not set up for use with LaTeX The Next CEO of Stack OverflowEntering Unicode characters in LaTeXHow to solve the `Package inputenc Error: Unicode char not set up for use with LaTeX` problem?solve “Unicode char is not set up for use with LaTeX” without special handling of every new interesting UTF-8 characterPackage inputenc Error: Unicode character ² (U+B2)(inputenc) not set up for use with LaTeX. acroI2C[I²C]package inputenc error unicode char (u + 190) not set up for use with latexPackage inputenc Error: Unicode char u8:′ not set up for use with LaTeX. 3′inputenc Error: Unicode char u8: not set up for use with LaTeX with G-BriefPackage Inputenc Error: Unicode char u8: not set up for use with LaTeXPackage inputenc Error: Unicode char ́ (U+301)(inputenc) not set up for use with LaTeX. includePackage inputenc Error: Unicode char ̂ (U+302)(inputenc) not set up for use with LaTeX. … $widehatleft (OA,AA' right )$Package inputenc Error: Unicode char â„¡ (U+2121)(inputenc) not set up for use with LaTeX. printbibliography[heading=bibintoc]Package inputenc Error: Unicode char − (U+2212)(inputenc) not set up for use with LaTeXPackage inputenc Error: Unicode character α (U+3B1) not set up for use with LaTeXPackage inputenc Error: Unicode characterError: ! Package inputenc Error: Unicode char ⊘ (U+2298)(inputenc) not set up for use with LaTeX