How do I make the characters have the same size? The Next CEO of Stack Overflowequal size numerator and denominatorHow to put two subfigures with subcaptions side by side, with the same height, calculated to add up to a specified overall width?How can I force the same resizing factor for two includegraphics?How to make the table fit better?How to make long table fit using column environment in beamerIs there a way to adjust the size of the footnote bar in BeamerHow can I redefine the minus sign to be of the same width as plus?How to match font size in TikZ figures and document textHow to scale multiple elements to maximum width while keeping their relative size fixed?How to change the height of several rows only?Resize several math operators to the same size
Would a completely good Muggle be able to use a wand?
Grabbing quick drinks
Is there a way to save my career from absolute disaster?
Yu-Gi-Oh cards in Python 3
Prepend last line of stdin to entire stdin
Does increasing your ability score affect your main stat?
Does Germany produce more waste than the US?
Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?
Can MTA send mail via a relay without being told so?
Is it possible to replace duplicates of a character with one character using tr
Why didn't Khan get resurrected in the Genesis Explosion?
Is French Guiana a (hard) EU border?
Calculator final project in Python
What was the first Unix version to run on a microcomputer?
Chain wire methods together in Lightning Web Components
Make solar eclipses exceedingly rare, but still have new moons
Writing differences on a blackboard
Axiom Schema vs Axiom
0 rank tensor vs 1D vector
Are police here, aren't itthey?
Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?
Why the difference in type-inference over the as-pattern in two similar function definitions?
Why do airplanes bank sharply to the right after air-to-air refueling?
Which one is the true statement?
How do I make the characters have the same size?
The Next CEO of Stack Overflowequal size numerator and denominatorHow to put two subfigures with subcaptions side by side, with the same height, calculated to add up to a specified overall width?How can I force the same resizing factor for two includegraphics?How to make the table fit better?How to make long table fit using column environment in beamerIs there a way to adjust the size of the footnote bar in BeamerHow can I redefine the minus sign to be of the same width as plus?How to match font size in TikZ figures and document textHow to scale multiple elements to maximum width while keeping their relative size fixed?How to change the height of several rows only?Resize several math operators to the same size
Th following is the full code that produces the image shown below:
documentclassarticle
usepackage[utf8]inputenc
usepackage[english]babel
usepackageamsthm
usepackageamsmath
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
theoremstyleremark
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
beginproof
Suppose that the function textitf is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Bigz:.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
beginequation
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta.
endequation\
Or equivalently, we have that
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
The above image is created using
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
New contributor
add a comment |
Th following is the full code that produces the image shown below:
documentclassarticle
usepackage[utf8]inputenc
usepackage[english]babel
usepackageamsthm
usepackageamsmath
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
theoremstyleremark
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
beginproof
Suppose that the function textitf is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Bigz:.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
beginequation
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta.
endequation\
Or equivalently, we have that
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
The above image is created using
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
New contributor
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
7 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
3 mins ago
add a comment |
Th following is the full code that produces the image shown below:
documentclassarticle
usepackage[utf8]inputenc
usepackage[english]babel
usepackageamsthm
usepackageamsmath
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
theoremstyleremark
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
beginproof
Suppose that the function textitf is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Bigz:.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
beginequation
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta.
endequation\
Or equivalently, we have that
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
The above image is created using
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
New contributor
Th following is the full code that produces the image shown below:
documentclassarticle
usepackage[utf8]inputenc
usepackage[english]babel
usepackageamsthm
usepackageamsmath
usepackage[left=1.5in, right=1.5in, top=0.5in]geometry
newtheoremdefinitionDefinition
newtheoremtheoremTheorem
theoremstyleremark
begindocument
titleExtra Credit
maketitle
begindefinition
If f is analytic at $z_0$, then the series
beginequation
f(z_0) + f'(z_0)(z-z_0) + fracf''(z_0)2!(z-z_0)^2 + cdots = sum_n=0^infty fracf^(n)(z_0)n!(z-z_0)^n
endequation
is called the Taylor series for f around $z_0$.
enddefinition
begintheorem
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
beginequation
f^(n)(z_0) = fracn!2pi i int_Gamma fracf(zeta)(zeta - z_0)^n+1dzeta hspace1cm (n=1,2,3, cdots )
endequation
endtheorem
hrulefill
begintheorem
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
endtheorem
beginproof
Suppose that the function textitf is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Bigz:.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
beginequation
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta.
endequation\
Or equivalently, we have that
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
The above image is created using
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\ &= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)frac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
resize
New contributor
New contributor
New contributor
asked 9 mins ago
K.MK.M
1164
1164
New contributor
New contributor
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
7 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
3 mins ago
add a comment |
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
7 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
3 mins ago
1
1
Use
displaystyle
at the beginning of the outer denominator.– L. F.
7 mins ago
Use
displaystyle
at the beginning of the outer denominator.– L. F.
7 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
3 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
3 mins ago
add a comment |
1 Answer
1
active
oldest
votes
You want to
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\
&= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)displaystylefrac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
or simply dfrac
as you can use amsmath
package.
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
K.M is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482365%2fhow-do-i-make-the-characters-have-the-same-size%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You want to
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\
&= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)displaystylefrac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
or simply dfrac
as you can use amsmath
package.
add a comment |
You want to
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\
&= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)displaystylefrac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
or simply dfrac
as you can use amsmath
package.
add a comment |
You want to
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\
&= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)displaystylefrac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
or simply dfrac
as you can use amsmath
package.
You want to
beginalign*
sum_n=0^infty frac(z-z_0)^n2pi i int_C fracf(zeta)(zeta - z_0)^n+1dzeta
&= frac12pi i sum_n=0^infty int_C frac(z-z_0)^nf(zeta)(zeta - z_0)^n+1dzeta
\
&= frac12pi iint_Csum_n=0^infty frac1zeta - z_0fracf(zeta)displaystylefrac(zeta - z_0)^n(z-z_0)^ndzeta
\ &= frac12pi i int_C fracf(zeta)zeta - z_0sum_n=0^inftyleft( fracz-z_0zeta - z_0right)^n dzeta
endalign*
or simply dfrac
as you can use amsmath
package.
answered 5 mins ago
Przemysław ScherwentkePrzemysław Scherwentke
29.9k54795
29.9k54795
add a comment |
add a comment |
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
K.M is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482365%2fhow-do-i-make-the-characters-have-the-same-size%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Use
displaystyle
at the beginning of the outer denominator.– L. F.
7 mins ago
Possible duplicate of equal size numerator and denominator
– L. F.
3 mins ago