When Does an Atlas Uniquely Define a Manifold? The Next CEO of Stack OverflowWhy maximal atlasAtlas on product manifoldWhat is the significance of incompatible coordinate charts for a manifold?Why do we require that a complex manifold has the structure of a real manifold?Problem defining a smooth m-manifold via a smooth atlasHow to define differentiable functions on manifolds?why is a differentiable manifold defined by a diffeomorphism of the charts in its Atlas?Is the maximal atlas for a topological manifold unique?Manifolds with Boundary and Maximal AtlasCan't understand the definition of equivalence of topological atlas.

Anatomically Correct Strange Women In Ponds Distributing Swords

Whats the best way to handle refactoring a big file?

Why do remote companies require working in the US?

How to Reset Passwords on Multiple Websites Easily?

What is the difference between "behavior" and "behaviour"?

Customer Requests (Sometimes) Drive Me Bonkers!

Need some help with wall behind rangetop

WOW air has ceased operation, can I get my tickets refunded?

Where to find order of arguments for default functions

Rotate a column

How to get regions to plot as graphics

How do I solve this limit?

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

What makes a siege story/plot interesting?

Why doesn't a table tennis ball float on the surface? How do we calculate buoyancy here?

Robert Sheckley short story about vacation spots being overwhelmed

How do I get the green key off the shelf in the Dobby level of Lego Harry Potter 2?

What does "Its cash flow is deeply negative" mean?

Increase performance creating Mandelbrot set in python

Opposite of a diet

Go Pregnant or Go Home

Does the Brexit deal have to be agreed by both Houses?

Which organization defines CJK Unified Ideographs?

What is the point of a new vote on May's deal when the indicative votes suggest she will not win?



When Does an Atlas Uniquely Define a Manifold?



The Next CEO of Stack OverflowWhy maximal atlasAtlas on product manifoldWhat is the significance of incompatible coordinate charts for a manifold?Why do we require that a complex manifold has the structure of a real manifold?Problem defining a smooth m-manifold via a smooth atlasHow to define differentiable functions on manifolds?why is a differentiable manifold defined by a diffeomorphism of the charts in its Atlas?Is the maximal atlas for a topological manifold unique?Manifolds with Boundary and Maximal AtlasCan't understand the definition of equivalence of topological atlas.










6












$begingroup$


I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?










share|cite|improve this question









$endgroup$











  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    2 hours ago















6












$begingroup$


I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?










share|cite|improve this question









$endgroup$











  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    2 hours ago













6












6








6


1



$begingroup$


I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?










share|cite|improve this question









$endgroup$




I am totally new to differential geometry and am having trouble understanding a very basic idea. In what follows, I apologize for being gratuitously pedantic, but I want to be sure I clearly understand what's going on.



If $M$ is a set and $T$ is a topology on $M$ such that $(M,T)$ is Hausdorff and second countable, then $M$ is a topological manifold if for all $pin M$ there exists an ordered pair $(U,x)$ such that $U subset M$ is $T$-open and $x:Urightarrow mathbbR^d$ is a homeomorphism whose image is an open subset of $mathbbR^d$ in the standard topology.



Ordered pairs $(U,x)$ that satisfy the conditions in the above paragraph are called charts on the manifold. An atlas for $M$ is a collection of charts on $M$, $A = (U_a,x_a)colon a in I$, such that $cup_alphain IU_a = M$.



Question 1: Does every manifold have at least one atlas?



My answer: I believe so, since by the definition of a manifold there exists at least one chart for each point, and the collection of either all or at least one of the charts at each point can be taken as an atlas. Perhaps however there is some technical problem in set theory with this construction.



Question 2: Does an atlas uniquely define a manifold? That is, if $A$ and $A'$ are atlases and $A neq A'$, is it necessary true that the manifolds with $(X,T)$ as their underlying space but with atlases $A$ and $A'$ respectively are different? (In the naive sense--not considering the possibility that they are diffeomorphic)



I believe the core concept I'm struggling with here is what the naive notion of equivalence is for manifolds. (For example, for topological spaces "naive equivalence" means that the two underlying sets are equal and the two topologies have exactly the same open sets, rather than the existence of a homeomorphism, which is a more sophisticated notion of equivalence.)



If instead we define a topological manifold as an ordered triple $(M,T,A)$, where $A$ is an atlas, my confusion vanishes. But then naive equivalence requires exactly the same charts in the atlas, which might be too much to reasonably say that two manifolds are the same. I've also not seen this definition in any of the references I'm using. This brings up the following question.



Question 3: Is it possible to define a manifold as an ordered triple, as in the paragraph above?







differential-geometry manifolds differential-topology smooth-manifolds






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









SZNSZN

2,748720




2,748720











  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    2 hours ago
















  • $begingroup$
    "Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
    $endgroup$
    – Eric Wofsey
    2 hours ago















$begingroup$
"Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
$endgroup$
– Eric Wofsey
2 hours ago




$begingroup$
"Diffeomorphic" is the wrong word if you're talking about topological manifolds--the non-naive notion of equivalence is just homeomorphism.
$endgroup$
– Eric Wofsey
2 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166644%2fwhen-does-an-atlas-uniquely-define-a-manifold%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



    For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



    That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



    In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




    As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



      For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



      That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



      In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




      As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



        For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



        That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



        In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




        As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).






        share|cite|improve this answer









        $endgroup$



        For Question 1, you are right. For instance, you can just take the set of all charts on $(M,T)$ and they will be an atlas.



        For Questions 2 and 3, as you have defined a topological manifold, a topological manifold is just a topological space which satisfies certain properties. So, an atlas doesn't actually have anything to do with what a topological manifold is (an atlas just happens to exist on any topological manifold). Two manifolds are equal iff they are equal as topological spaces.



        That said, no one actually cares about equality of manifolds. What people actually care about is whether two manifolds are homeomorphic (or more specifically, whether specific maps between them are homeomorphisms). In other words, the "naive equivalence" you are asking about is not important for any applications. As a result, it's perfectly fine to use a definition as you propose in Question 3, where an atlas is part of what a manifold is. This will change what equality of manifolds means (i.e., "naive equivalence") but will not change the notion of equivalence that actually matters, which is homeomorphism.



        In the language of category theory, you can define a category $Man$ whose objects are topological manifolds (according to your original definition) and whose maps are continuous maps. You can also define a category $Man'$ whose objects are topological manifolds together with an atlas and whose maps are continuous maps. There is a forgetful functor $F:Man'to Man$ which forgets the atlas. This functor is not an isomorphism of categories, but it is an equivalence of categories, which is good enough for everything people ever want to do with manifolds.




        As a final remark, atlases are pretty irrelevant to the study of topological manifolds. The reason atlases are important is to define smooth manifolds, which impose some additional conditions on what kind of atlases are allowed. A smoooth manifold cannot be defined as just a topological space, but instead must be defined as a topological space together with an atlas satisfying certain assumptions (or a topological space together with some other additional structure equivalent to an atlas).







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        Eric WofseyEric Wofsey

        191k14216349




        191k14216349



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166644%2fwhen-does-an-atlas-uniquely-define-a-manifold%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

            Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

            Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"