Functio quadratica Proprietates | Nexus interni Nexus externus | Tabula navigationis"maths online function plotter"

Mathematica


functioparabolacontinuaemonotoniamDerivatioIntegralisnumeri complexirealia"maths online function plotter"




Functio quadratica est functio formae f(x)=ax2+bx+c;a,b,c∈R,a≠0displaystyle f(x)=ax^2+bx+c;a,b,cin mathbb R ,aneq 0. Graphium talis functionis parabola est.



Proprietates |


1.) Omnes functiones quadraticae continuae sunt atque omnibus numeris realibus definiri possunt.


2.) Ad monotoniam functionum quadraticarum parametrum a pertinet. Si a>0displaystyle a>0, primum parabola stricte monotone descendit usque ad solum extremum (hic minimum), dum stricte monotone ascendit. Si a<0displaystyle a<0, primum stricte monotone ascendit usque ad maximum, dum stricte monotone descendit.


3.) Derivatio talis functionis: (ax2+bx+c)′=2ax+bdisplaystyle (ax^2+bx+c)'=2ax+b. Quod haec functio linearis atque talibus functionibus solum unum zerum est, functio quadratica exacte unum extremum habet.


4.) Integralis functionis quadraticae: ∫(ax2+bx+c)dx=a3x3+b2x2+cx+d;d∈Rdisplaystyle int (ax^2+bx+c),dx=frac a3x^3+frac b2x^2+cx+d;din mathbb R


5.) Problemum reperiendi zera functionum quadraticarum valde magnum est, nam per eum numeri complexi nati sunt:


ax2+bx+c=0displaystyle ax^2+bx+c=0,


ergo ax2+bx=−cdisplaystyle ax^2+bx=-c,


ergo ax2+bx+b24a=b24a−cdisplaystyle ax^2+bx+frac b^24a=frac b^24a-c,


ergo (ax+b2a)2=b24a−cdisplaystyle (sqrt ax+frac b2sqrt a)^2=frac b^24a-c,


ergo ax1,2+b2a=±b24a−cdisplaystyle sqrt ax_1,2+frac b2sqrt a=pm sqrt frac b^24a-c,


ergo ax1,2=−b2a±b24a−cdisplaystyle sqrt ax_1,2=-frac b2sqrt apm sqrt frac b^24a-c,


ergo ax1,2=−b±b2−4ac2adisplaystyle sqrt ax_1,2=frac -bpm sqrt b^2-4ac2sqrt a,


ergo x1,2=−b±b2−4ac2adisplaystyle x_1,2=frac -bpm sqrt b^2-4ac2a


Functioni ergo duo zera sunt, si numerus D=b2−4acdisplaystyle D=b^2-4ac (discriminans, quod tres casus solutionum aequationis/zerorum functionis discriminat) positivus, unum zerum, si 0 est. Si autem D<0displaystyle D<0, functio nulla zera realia habet. Amplificando Rdisplaystyle mathbb R , mathematici copiam numerorum complexorum Cdisplaystyle mathbb C creaverunt. Hac in copia etiam casu D<0displaystyle D<0 zera, sed complexa sunt.


6.) Talis functio exacte unum extremum habet; computatur per derivationem functionis:


(ax2+bx+c)′=2ax+bdisplaystyle (ax^2+bx+c)'=2ax+b


Zerum derivationis extremum dat:


2ax+b=0displaystyle 2ax+b=0,


ergo x=−b2adisplaystyle x=-frac b2a


Si hic valor in termino functionis substituitur hicque transformatur, coordinatum y extremi reperiri potest: S(−b2a|4ac−b24a)displaystyle S(-frac b2a


7.) Derviatio secunda harum functionum semper numerus realis ≠0displaystyle neq 0 est, itaque quibus nulla puncta inflexionis sunt.


Nexus interni




  • aequatio quadratica

  • numerus complexus

  • parabola


Nexus externus |


"maths online function plotter" - instrumentum quo graphia functionum describi possunt (lingua anglica)







Popular posts from this blog

How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"

Haugesund Nexus externi | Tabula navigationisHaugesund pagina interretialisAmplifica