Proof of Lemma: Every nonzero integer can be written as a product of primesComplete induction proof that every $n > 1$ can be written as a product of primesWhat's wrong with this proof of the infinity of primes?Induction Proof - Primes and Euclid's LemmaEuclid's proof of Infinitude of Primes: If a prime divides an integer, why would it have to divide 1?Proof or disproof that every integer can be written as the sum of a prime and a square.Prove two subsequent primes cannot be written as a product of two primesProof by well ordering: Every positive integer greater than one can be factored as a product of primes.Difficult Q: Show that every integer $n$ can be written in the form $n = a^2 b$….product of distinct primesWhy is the proof not right ? Every positive integer can be written as a product of primes?Proof by well ordering: Every positive integer greater than one can be factored as a product of primes. Part II
How can "mimic phobia" be cured or prevented?
Folder comparison
Open a doc from terminal, but not by its name
Why is Arduino resetting while driving motors?
Bob has never been a M before
How to color a curve
How to decide convergence of Integrals
How should I respond when I lied about my education and the company finds out through background check?
How do I implement a file system driver driver in Linux?
Are lightweight LN wallets vulnerable to transaction withholding?
Should I install hardwood flooring or cabinets first?
What linear sensor for a keyboard?
Have I saved too much for retirement so far?
Can we have a perfect cadence in a minor key?
A Permanent Norse Presence in America
List of people who lose a child in תנ"ך
Database accidentally deleted with a bash script
How do I repair my stair bannister?
What does this horizontal bar at the first measure mean?
How must one send away the mother bird?
Two-sided logarithm inequality
Is XSS in canonical link possible?
Proof of Lemma: Every nonzero integer can be written as a product of primes
Why do IPv6 unique local addresses have to have a /48 prefix?
Proof of Lemma: Every nonzero integer can be written as a product of primes
Complete induction proof that every $n > 1$ can be written as a product of primesWhat's wrong with this proof of the infinity of primes?Induction Proof - Primes and Euclid's LemmaEuclid's proof of Infinitude of Primes: If a prime divides an integer, why would it have to divide 1?Proof or disproof that every integer can be written as the sum of a prime and a square.Prove two subsequent primes cannot be written as a product of two primesProof by well ordering: Every positive integer greater than one can be factored as a product of primes.Difficult Q: Show that every integer $n$ can be written in the form $n = a^2 b$….product of distinct primesWhy is the proof not right ? Every positive integer can be written as a product of primes?Proof by well ordering: Every positive integer greater than one can be factored as a product of primes. Part II
$begingroup$
I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.
I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.
The proof is as follows:
Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.
I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?
elementary-number-theory prime-numbers proof-explanation integers
New contributor
$endgroup$
add a comment |
$begingroup$
I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.
I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.
The proof is as follows:
Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.
I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?
elementary-number-theory prime-numbers proof-explanation integers
New contributor
$endgroup$
2
$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
2 hours ago
1
$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
2 hours ago
$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
2 hours ago
$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
1 hour ago
add a comment |
$begingroup$
I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.
I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.
The proof is as follows:
Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.
I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?
elementary-number-theory prime-numbers proof-explanation integers
New contributor
$endgroup$
I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.
I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.
The proof is as follows:
Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.
I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?
elementary-number-theory prime-numbers proof-explanation integers
elementary-number-theory prime-numbers proof-explanation integers
New contributor
New contributor
edited 1 hour ago
Robert Soupe
11.4k21950
11.4k21950
New contributor
asked 2 hours ago
Alena GusakovAlena Gusakov
112
112
New contributor
New contributor
2
$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
2 hours ago
1
$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
2 hours ago
$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
2 hours ago
$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
1 hour ago
add a comment |
2
$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
2 hours ago
1
$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
2 hours ago
$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
2 hours ago
$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
1 hour ago
2
2
$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
2 hours ago
$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
2 hours ago
1
1
$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
2 hours ago
$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
2 hours ago
$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
2 hours ago
$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
2 hours ago
$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
1 hour ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.
We are allowed to say a least $N$ exists because of the well-ordering principle.
$endgroup$
$begingroup$
I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
$endgroup$
– Don Thousand
1 hour ago
$begingroup$
@Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
@RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
$endgroup$
– Nate Eldredge
30 mins ago
$begingroup$
@DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
$endgroup$
– Nate Eldredge
28 mins ago
add a comment |
$begingroup$
Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:
Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161147%2fproof-of-lemma-every-nonzero-integer-can-be-written-as-a-product-of-primes%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.
We are allowed to say a least $N$ exists because of the well-ordering principle.
$endgroup$
$begingroup$
I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
$endgroup$
– Don Thousand
1 hour ago
$begingroup$
@Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
@RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
$endgroup$
– Nate Eldredge
30 mins ago
$begingroup$
@DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
$endgroup$
– Nate Eldredge
28 mins ago
add a comment |
$begingroup$
The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.
We are allowed to say a least $N$ exists because of the well-ordering principle.
$endgroup$
$begingroup$
I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
$endgroup$
– Don Thousand
1 hour ago
$begingroup$
@Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
@RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
$endgroup$
– Nate Eldredge
30 mins ago
$begingroup$
@DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
$endgroup$
– Nate Eldredge
28 mins ago
add a comment |
$begingroup$
The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.
We are allowed to say a least $N$ exists because of the well-ordering principle.
$endgroup$
The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.
We are allowed to say a least $N$ exists because of the well-ordering principle.
answered 2 hours ago
Edgar Jaramillo RodriguezEdgar Jaramillo Rodriguez
1065
1065
$begingroup$
I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
$endgroup$
– Don Thousand
1 hour ago
$begingroup$
@Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
@RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
$endgroup$
– Nate Eldredge
30 mins ago
$begingroup$
@DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
$endgroup$
– Nate Eldredge
28 mins ago
add a comment |
$begingroup$
I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
$endgroup$
– Don Thousand
1 hour ago
$begingroup$
@Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
@RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
$endgroup$
– Nate Eldredge
30 mins ago
$begingroup$
@DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
$endgroup$
– Nate Eldredge
28 mins ago
$begingroup$
I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
$endgroup$
– Don Thousand
1 hour ago
$begingroup$
I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
$endgroup$
– Don Thousand
1 hour ago
$begingroup$
@Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
@Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
$endgroup$
– Robert Soupe
1 hour ago
$begingroup$
@RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
$endgroup$
– Nate Eldredge
30 mins ago
$begingroup$
@RobertSoupe: Axiom of choice. The more usual abbreviation is AC.
$endgroup$
– Nate Eldredge
30 mins ago
$begingroup$
@DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
$endgroup$
– Nate Eldredge
28 mins ago
$begingroup$
@DonThousand: I think "well-ordering principle" here refers to the statement "the usual ordering on the natural numbers is a well order". The Axiom of Choice equivalent is "every set admits an ordering which is a well order" - that wouldn't really even help with this proof, since it would only tell us that there is some ordering of the natural numbers which is a well order - it doesn't tell us that the usual ordering is one.
$endgroup$
– Nate Eldredge
28 mins ago
add a comment |
$begingroup$
Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:
Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.
$endgroup$
add a comment |
$begingroup$
Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:
Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.
$endgroup$
add a comment |
$begingroup$
Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:
Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.
$endgroup$
Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:
Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.
answered 1 hour ago
lhflhf
166k11172402
166k11172402
add a comment |
add a comment |
Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.
Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.
Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.
Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161147%2fproof-of-lemma-every-nonzero-integer-can-be-written-as-a-product-of-primes%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
2 hours ago
1
$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
2 hours ago
$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
2 hours ago
$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
1 hour ago