Fine Tuning of the UniverseFine Tuned UniverseRelationship between hierarchy problem and higgs fine tuning?Definition of Fine-TuningEarliest example of naturalness/fine-tuning argumentsMultiverse explanation of fine tuning of cosmic constantsCan dimensional regularization solve the fine-tuning problem?Are the fundamental constants of nature independent?Does the Peccei-Quinn (PQ) mechanism require fine-tuning?Why does the flatness problem (of the universe) present a fine tuning problem?Bare Cosmological Constant and Fine-Tuning Problem

CREATE opcode: what does it really do?

Customer Requests (Sometimes) Drive Me Bonkers!

How do I find the solutions of the following equation?

Are student evaluations of teaching assistants read by others in the faculty?

Implement the Thanos sorting algorithm

A particular customize with green line and letters for subfloat

What happens if you roll doubles 3 times then land on "Go to jail?"

Method to test if a number is a perfect power?

Pole-zeros of a real-valued causal FIR system

Is the destination of a commercial flight important for the pilot?

Is there a good way to store credentials outside of a password manager?

Is exact Kanji stroke length important?

Large drywall patch supports

Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?

Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?

India just shot down a satellite from the ground. At what altitude range is the resulting debris field?

Purchasing a ticket for someone else in another country?

Failed to fetch jessie backports repository

Why not increase contact surface when reentering the atmosphere?

How does the UK government determine the size of a mandate?

How to Reset Passwords on Multiple Websites Easily?

Lay out the Carpet

How to check is there any negative term in a large list?

Opposite of a diet



Fine Tuning of the Universe


Fine Tuned UniverseRelationship between hierarchy problem and higgs fine tuning?Definition of Fine-TuningEarliest example of naturalness/fine-tuning argumentsMultiverse explanation of fine tuning of cosmic constantsCan dimensional regularization solve the fine-tuning problem?Are the fundamental constants of nature independent?Does the Peccei-Quinn (PQ) mechanism require fine-tuning?Why does the flatness problem (of the universe) present a fine tuning problem?Bare Cosmological Constant and Fine-Tuning Problem













4












$begingroup$


I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.










share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    5 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    2 hours ago















4












$begingroup$


I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.










share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    5 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    2 hours ago













4












4








4





$begingroup$


I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.










share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.







physical-constants time-evolution cosmological-constant fine-tuning






share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









Samuel HunterSamuel Hunter

212




212




New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    5 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    2 hours ago












  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    5 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    2 hours ago







1




1




$begingroup$
It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
$endgroup$
– Dmitry Brant
5 hours ago




$begingroup$
It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
$endgroup$
– Dmitry Brant
5 hours ago












$begingroup$
Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
$endgroup$
– Chiral Anomaly
2 hours ago




$begingroup$
Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
$endgroup$
– Chiral Anomaly
2 hours ago










1 Answer
1






active

oldest

votes


















6












$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    3 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469025%2ffine-tuning-of-the-universe%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    3 hours ago















6












$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    3 hours ago













6












6








6





$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$



The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 5 hours ago

























answered 5 hours ago









gabegabe

14711




14711











  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    3 hours ago
















  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    3 hours ago















$begingroup$
also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
$endgroup$
– JEB
3 hours ago




$begingroup$
also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
$endgroup$
– JEB
3 hours ago










Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.












Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.











Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469025%2ffine-tuning-of-the-universe%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"