Leges binominales Leges | Bibliographia | Tabula navigationisAmplifica

Algebra


algebra elementariapolynomiumTheorema binomiale






Prima lex


Leges binominales[1] in algebra elementaria sunt regulae, per quas possumus multiplicare binomiales. Binomialis (vel binomen) est polynomium duorum membrorum, ut x + 5.



Leges |


Leges binominales solite hae tres sunt:









(a+b)2=a2+2⋅a⋅b+b2displaystyle (a+b)^2=a^2+2cdot acdot b+b^2

Prima Lex Binominalis

(Lex Additionis)



(a−b)2=a2−2⋅a⋅b+b2displaystyle (a-b)^2=a^2-2cdot acdot b+b^2

Secunda Lex Binominalis

 (Lex Subtractionis)



(a+b)⋅(a−b)=a2−b2displaystyle (a+b)cdot (a-b)=a^2-b^2

Tertia Lex Binominalis

(Lex Additionis et Subtractionis)


Probatio Multiplicationis:


(a+b)2=(a+b)⋅(a+b)=a⋅a+a⋅b+b⋅a+b⋅b=a2+2⋅a⋅b+b2displaystyle (a+b)^2=(a+b)cdot (a+b)=acdot a+acdot b+bcdot a+bcdot b=a^2+2cdot acdot b+b^2

(a−b)2=(a−b)⋅(a−b)=a⋅a−a⋅b−b⋅a+b⋅b=a2−2⋅a⋅b+b2displaystyle (a-b)^2=(a-b)cdot (a-b)=acdot a-acdot b-bcdot a+bcdot b=a^2-2cdot acdot b+b^2

(a+b)⋅(a−b)=a⋅a−a⋅b+b⋅a−b⋅b=a2−b2displaystyle (a+b)cdot (a-b)=acdot a-acdot b+bcdot a-bcdot b=a^2-b^2

Et generaliter:


(a+b)⋅(c+d)=a⋅c+a⋅d+b⋅c+b⋅ddisplaystyle (a+b)cdot (c+d)=acdot c+acdot d+bcdot c+bcdot d


Mnemonicon anglicum huius regulae est FOIL, id quod First, Outer, Inner, Last significat:


  • First = primi, (a + b)(c + d)

  • Outer = externi, (a + b)(c + d)

  • Inner = interni, (a + b)(c + d)

  • Last = ultimi, (a + b)(c + d)

Latine mementote PEIUs.


Theorema binomiale est generalizatio harum legum.



Bibliographia |


  • Bashmakova, I. G., et G. S. Smirnova. The Beginnings and Evolution of Algebra, versio anglica Abe Shenitzer, editor David A. Cox. Vasingtoniae: Mathematical Association of America, 2000. ISBN 0883853299

  • Kuhn, Harry Waldo. Elementary College Algebra. Novi Eboraci: Macmillan, 1935. OCLC 7634699


.mw-parser-output .stipulapadding:3px;background:#F7F8FF;border:1px solid grey;margin:auto.mw-parser-output .stipula td.cell1background:transparent;color:white



mathematica

Haec stipula ad mathematicam spectat. Amplifica, si potes!

  1. Warning icon.svg Fons nominis Latini desideratur (addito fonte, hanc formulam remove)








Popular posts from this blog

How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"

Haugesund Nexus externi | Tabula navigationisHaugesund pagina interretialisAmplifica