Irreducibility of a simple polynomialShow $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$

Cynical novel that describes an America ruled by the media, arms manufacturers, and ethnic figureheads

Why did Kant, Hegel, and Adorno leave some words and phrases in the Greek alphabet?

Was the picture area of a CRT a parallelogram (instead of a true rectangle)?

How to prove that the query oracle is unitary?

Is the destination of a commercial flight important for the pilot?

Opposite of a diet

Select empty space and change color in vector

voltage of sounds of mp3files

Is there a problem with hiding "forgot password" until it's needed?

Is a roofing delivery truck likely to crack my driveway slab?

What is the oldest known work of fiction?

Lay out the Carpet

Star/Wye electrical connection math symbol

Using parameter substitution on a Bash array

How does a character multiclassing into warlock get a focus?

What is the intuitive meaning of having a linear relationship between the logs of two variables?

Valid Badminton Score?

HashMap containsKey() returns false although hashCode() and equals() are true

Everything Bob says is false. How does he get people to trust him?

How can I use the arrow sign in my bash prompt?

Personal Teleportation as a Weapon

Do I need a multiple entry visa for a trip UK -> Sweden -> UK?

Why is delta-v is the most useful quantity for planning space travel?

Modulo 2 binary long division in European notation



Irreducibility of a simple polynomial


Show $x^6 + 1.5x^5 + 3x - 4.5$ is irreducible in $mathbb Q[x]$.Determine whether the polynomial $x^2-12$ in $mathbb Z[x]$ satisfies an Eisenstein criterion for irreducibility over $mathbb Q$Proving Irreducibility of $x^4-16x^3+20x^2+12$ in $mathbb Q[x]$Constructibility of roots of a polynomialEisenstein's criterion for polynomials in Z mod pProving irreducibility; What is this method and what is the logic behind it?Irreducibility of special cyclotomic polynomial.Irreducibility of a Polynomial after a substitutionIrreducibility of Non-monic Quartic Polynomials in Q[x]Irreducible monic polynomial in $mathbbQ[x]$













3












$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago
















3












$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago














3












3








3


1



$begingroup$


For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.










share|cite|improve this question









$endgroup$




For an integer $a$, I'm trying to find a criterion to tell me if $x^4+a^2$ is irreducible over $mathbbQ$.



What I've done so far is shown that if $a$ is odd, then $a^2$ is congruent to $1 mod 4$, and so the Eisenstein criterion with $p = 2$ tells me that $(x+1)^4 + a^2$ is irreducible and hence $x^4+a^2$ is irreducible.



For $a$ even I have had no such luck. I know that the polynomial is not irreducible for all such $a$ because when $a = 2$, for example, we have the factorization $x^4+4 = (x^2-2x+2)(x^2+2x+2)$. It's easy to show that this polynomial has no linear factors, but I'm at a loss trying to decide when there are a pair of irreducible quadratic factors.



A thought I had was to try and consider when $mathbbQ(sqrtai)$ is a degree $4$ extension, but this didn't seem to help.







abstract-algebra field-theory irreducible-polynomials






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









JonHalesJonHales

520311




520311







  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago













  • 2




    $begingroup$
    If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
    $endgroup$
    – Sil
    1 hour ago








2




2




$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
1 hour ago





$begingroup$
If $a=2n^2$, then $x^4+a^2=x^4+(2n^2)^2=(x^2-2nx+2n^2)(x^2+2nx+2n^2)$. In other cases it seems to be irreducible.
$endgroup$
– Sil
1 hour ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

Notice that we are trying to reduce that polynomial by this way:



$$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



We need:



$$2a-b^2=0$$
$$b=sqrt2a$$



But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



$$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



Which is also known as Sophie Germain Identity.






share|cite|improve this answer








New contributor




Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
    $endgroup$
    – Sil
    1 hour ago










  • $begingroup$
    @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
    $endgroup$
    – Eureka
    1 hour ago







  • 1




    $begingroup$
    @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
    $endgroup$
    – Ethan MacBrough
    1 hour ago










  • $begingroup$
    @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
    $endgroup$
    – Sil
    59 mins ago


















2












$begingroup$

Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
$$
x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
(x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
$$

and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.






    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$












    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      59 mins ago















    4












    $begingroup$

    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.






    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$












    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      59 mins ago













    4












    4








    4





    $begingroup$

    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.






    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$



    Notice that we are trying to reduce that polynomial by this way:



    $$x^4+a^2=(x^2-bx+a)(x^2+bx+a)=x^4+(2a-b^2)x^2+a^2$$



    We need:



    $$2a-b^2=0$$
    $$b=sqrt2a$$



    But since we are working on integers then $$a=2k^2$$ .So your polynomial is reducible if and only if it can be written i nthis form:



    $$x^4+4k^4=(x^2-2kx+2k^2)(x^2+2kx+2k^2)$$



    Which is also known as Sophie Germain Identity.







    share|cite|improve this answer








    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    share|cite|improve this answer



    share|cite|improve this answer






    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    answered 1 hour ago









    EurekaEureka

    22611




    22611




    New contributor




    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    New contributor





    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.











    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      59 mins ago
















    • $begingroup$
      I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
      $endgroup$
      – Sil
      1 hour ago










    • $begingroup$
      @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
      $endgroup$
      – Eureka
      1 hour ago







    • 1




      $begingroup$
      @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
      $endgroup$
      – Ethan MacBrough
      1 hour ago










    • $begingroup$
      @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
      $endgroup$
      – Sil
      59 mins ago















    $begingroup$
    I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
    $endgroup$
    – Sil
    1 hour ago




    $begingroup$
    I think you should justify why $(x^2-bx+a)(x^2+bx+a)$ is the only possible form, and not generic $(x^2+mx+n)(x^2+px+q)$
    $endgroup$
    – Sil
    1 hour ago












    $begingroup$
    @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
    $endgroup$
    – Eureka
    1 hour ago





    $begingroup$
    @Sil It's pretty easy with complex factorization. And it can also be done with a system of equations.
    $endgroup$
    – Eureka
    1 hour ago





    1




    1




    $begingroup$
    @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
    $endgroup$
    – Ethan MacBrough
    1 hour ago




    $begingroup$
    @Sil Try expanding out $(x^2+mx+n)(x^2+px+q)$ and look at the $x^3$ term to why $m=-p$. Then expand $(x^2-bx+n)(x^2+bx+q)$ and look at the $x$ term to see why $n=q$.
    $endgroup$
    – Ethan MacBrough
    1 hour ago












    $begingroup$
    @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
    $endgroup$
    – Sil
    59 mins ago




    $begingroup$
    @EthanMacBrough I understand, my point though was that things like that should be in answer itself.
    $endgroup$
    – Sil
    59 mins ago











    2












    $begingroup$

    Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
    $$
    x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
    (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
    $$

    and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
      $$
      x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
      (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
      $$

      and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
        $$
        x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
        (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
        $$

        and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.






        share|cite|improve this answer









        $endgroup$



        Assuming, without loss of generality, $a>0$, the polynomial can be rewritten as
        $$
        x^4+2ax^2+a^2-2ax^2=(x^2+a)^2-(sqrt2ax)^2=
        (x^2-sqrt2ax+a)(x^2+sqrt2ax+a)
        $$

        and it's obvious that the two polynomials are irreducible over $mathbbR$. By uniqueness of factorization, this is a factorization in $mathbbQ[x]$ if and only if $2a$ is a square in $mathbbQ$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        egregegreg

        185k1486206




        185k1486206



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163711%2firreducibility-of-a-simple-polynomial%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

            Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"

            Haugesund Nexus externi | Tabula navigationisHaugesund pagina interretialisAmplifica