Why dont electromagnetic waves interact with each other?Gravitational lensing or cloud refraction?Electromagnetic RadiationWhy don't electromagnetic waves require a medium?How do mirrors work?What is light, and how can it travel in a vacuum forever in all directions at once without a medium?Can we explain Huygens' principle taking into account Maxwell's predictions?How do electromagnetic waves travel in a vacuum?Is the wobbly rope depiction of a radio wave inherently wrong? And how do vectors of parallel waves align with each other?Electromagnetic tensor propagation?Double slit experiment and electromagnetic waves

Can I make popcorn with any corn?

How is it possible to have an ability score that is less than 3?

Why are electrically insulating heatsinks so rare? Is it just cost?

Do I have a twin with permutated remainders?

Font hinting is lost in Chrome-like browsers (for some languages )

Dragon forelimb placement

Problem of parity - Can we draw a closed path made up of 20 line segments...

Collect Fourier series terms

Mathematical cryptic clues

Why do falling prices hurt debtors?

Is it important to consider tone, melody, and musical form while writing a song?

Why does Kotter return in Welcome Back Kotter?

Smoothness of finite-dimensional functional calculus

What's the point of deactivating Num Lock on login screens?

Prove that NP is closed under karp reduction?

Has the BBC provided arguments for saying Brexit being cancelled is unlikely?

How could an uplifted falcon's brain work?

What would happen to a modern skyscraper if it rains micro blackholes?

Is it legal for company to use my work email to pretend I still work there?

Can a Warlock become Neutral Good?

How does strength of boric acid solution increase in presence of salicylic acid?

Why Is Death Allowed In the Matrix?

What's the output of a record cartridge playing an out-of-speed record

tikz: show 0 at the axis origin



Why dont electromagnetic waves interact with each other?


Gravitational lensing or cloud refraction?Electromagnetic RadiationWhy don't electromagnetic waves require a medium?How do mirrors work?What is light, and how can it travel in a vacuum forever in all directions at once without a medium?Can we explain Huygens' principle taking into account Maxwell's predictions?How do electromagnetic waves travel in a vacuum?Is the wobbly rope depiction of a radio wave inherently wrong? And how do vectors of parallel waves align with each other?Electromagnetic tensor propagation?Double slit experiment and electromagnetic waves













1












$begingroup$


My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










    share|cite|improve this question









    $endgroup$














      1












      1








      1


      1



      $begingroup$


      My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










      share|cite|improve this question









      $endgroup$




      My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly







      electromagnetic-radiation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      Bálint TataiBálint Tatai

      23727




      23727




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



          1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


          2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


          3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


          Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



          An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471007%2fwhy-dont-electromagnetic-waves-interact-with-each-other%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



            1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


            2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


            3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


            Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



            An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






            share|cite|improve this answer











            $endgroup$

















              3












              $begingroup$

              Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



              1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


              2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


              3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


              Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



              An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






              share|cite|improve this answer











              $endgroup$















                3












                3








                3





                $begingroup$

                Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



                1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


                2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


                3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


                Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



                An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






                share|cite|improve this answer











                $endgroup$



                Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



                1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


                2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


                3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


                Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



                An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 43 mins ago

























                answered 1 hour ago









                G. SmithG. Smith

                10.5k11430




                10.5k11430



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471007%2fwhy-dont-electromagnetic-waves-interact-with-each-other%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

                    Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"

                    inputenc: Unicode character … not set up for use with LaTeX The Next CEO of Stack OverflowEntering Unicode characters in LaTeXHow to solve the `Package inputenc Error: Unicode char not set up for use with LaTeX` problem?solve “Unicode char is not set up for use with LaTeX” without special handling of every new interesting UTF-8 characterPackage inputenc Error: Unicode character ² (U+B2)(inputenc) not set up for use with LaTeX. acroI2C[I²C]package inputenc error unicode char (u + 190) not set up for use with latexPackage inputenc Error: Unicode char u8:′ not set up for use with LaTeX. 3′inputenc Error: Unicode char u8: not set up for use with LaTeX with G-BriefPackage Inputenc Error: Unicode char u8: not set up for use with LaTeXPackage inputenc Error: Unicode char ́ (U+301)(inputenc) not set up for use with LaTeX. includePackage inputenc Error: Unicode char ̂ (U+302)(inputenc) not set up for use with LaTeX. … $widehatleft (OA,AA' right )$Package inputenc Error: Unicode char â„¡ (U+2121)(inputenc) not set up for use with LaTeX. printbibliography[heading=bibintoc]Package inputenc Error: Unicode char − (U+2212)(inputenc) not set up for use with LaTeXPackage inputenc Error: Unicode character α (U+3B1) not set up for use with LaTeXPackage inputenc Error: Unicode characterError: ! Package inputenc Error: Unicode char ⊘ (U+2298)(inputenc) not set up for use with LaTeX