Theorems that impeded progressWhat are some famous rejections of correct mathematics?How to unify various reconstruction theorems (Gabriel-Rosenberg, Tannaka,Balmers)Theorems first published in textbooks?Theorems that are 'obvious' but hard to proveAn undergraduate's guide to the foundational theorems of logicProofs that inspire and teachExamples of major theorems with very hard proofs that have NOT dramatically improved over timeHistory of preservation theorems in forcing theoryAre there any Algebraic Geometry Theorems that were proved using Combinatorics?Did Euler prove theorems by example?Theorems demoted back to conjectures

Theorems that impeded progress


What are some famous rejections of correct mathematics?How to unify various reconstruction theorems (Gabriel-Rosenberg, Tannaka,Balmers)Theorems first published in textbooks?Theorems that are 'obvious' but hard to proveAn undergraduate's guide to the foundational theorems of logicProofs that inspire and teachExamples of major theorems with very hard proofs that have NOT dramatically improved over timeHistory of preservation theorems in forcing theoryAre there any Algebraic Geometry Theorems that were proved using Combinatorics?Did Euler prove theorems by example?Theorems demoted back to conjectures













5












$begingroup$


It may be that certain theorems, when proved true, counterintuitively retard
progress in certain domains. Lloyd Trefethen provides two examples:



  • Faber's Theorem on polynomial interpolation

  • Squire's Theorem on hydrodynamic instability


Trefethen, Lloyd N. "Inverse Yogiisms." Notices of the American Mathematical Society 63, no. 11 (2016).
Also: The Best Writing on Mathematics 2017 6 (2017): 28.
Google books link.




In my own experience, I have witnessed the several negative-results theorems in




Marvin Minsky and Seymour A. Papert.
Perceptrons: An Introduction to Computational Geometry , 1969.
MIT Press.




impede progress in neural-net research for more than a decade.1




Q. What are other examples of theorems whose (correct) proofs (possibly temporarily)
suppressed research advancement in mathematical subfields?






1
Olazaran, Mikel. "A sociological study of the official history of the perceptrons controversy." Social Studies of Science 26, no. 3 (1996): 611-659.
Abstract: "[...]I devote particular attention to the proofs and arguments of Minsky and Papert, which were interpreted as showing that further progress in neural nets was not possible, and that this approach to AI had to be abandoned.[...]"
RG link.








share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    I remember reading, I believe in some other MO post, about how whereas Donaldson's work on smooth 4 manifolds launched a vibrant program of research with invariants coming from physics, Freedman's contemporaneous work on topological 4 manifolds essentially ended the study of topological 4 manifolds. But maybe that's not what you mean by "impeded progress"
    $endgroup$
    – Sam Hopkins
    1 hour ago










  • $begingroup$
    @SamHopkins: I am seeking more misleading impeding, as opposed to closing off a line of investigation. Certainly when a line has terminated, that's it. But there are also misleading endings, which are not terminations afterall.
    $endgroup$
    – Joseph O'Rourke
    1 hour ago
















5












$begingroup$


It may be that certain theorems, when proved true, counterintuitively retard
progress in certain domains. Lloyd Trefethen provides two examples:



  • Faber's Theorem on polynomial interpolation

  • Squire's Theorem on hydrodynamic instability


Trefethen, Lloyd N. "Inverse Yogiisms." Notices of the American Mathematical Society 63, no. 11 (2016).
Also: The Best Writing on Mathematics 2017 6 (2017): 28.
Google books link.




In my own experience, I have witnessed the several negative-results theorems in




Marvin Minsky and Seymour A. Papert.
Perceptrons: An Introduction to Computational Geometry , 1969.
MIT Press.




impede progress in neural-net research for more than a decade.1




Q. What are other examples of theorems whose (correct) proofs (possibly temporarily)
suppressed research advancement in mathematical subfields?






1
Olazaran, Mikel. "A sociological study of the official history of the perceptrons controversy." Social Studies of Science 26, no. 3 (1996): 611-659.
Abstract: "[...]I devote particular attention to the proofs and arguments of Minsky and Papert, which were interpreted as showing that further progress in neural nets was not possible, and that this approach to AI had to be abandoned.[...]"
RG link.








share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    I remember reading, I believe in some other MO post, about how whereas Donaldson's work on smooth 4 manifolds launched a vibrant program of research with invariants coming from physics, Freedman's contemporaneous work on topological 4 manifolds essentially ended the study of topological 4 manifolds. But maybe that's not what you mean by "impeded progress"
    $endgroup$
    – Sam Hopkins
    1 hour ago










  • $begingroup$
    @SamHopkins: I am seeking more misleading impeding, as opposed to closing off a line of investigation. Certainly when a line has terminated, that's it. But there are also misleading endings, which are not terminations afterall.
    $endgroup$
    – Joseph O'Rourke
    1 hour ago














5












5








5





$begingroup$


It may be that certain theorems, when proved true, counterintuitively retard
progress in certain domains. Lloyd Trefethen provides two examples:



  • Faber's Theorem on polynomial interpolation

  • Squire's Theorem on hydrodynamic instability


Trefethen, Lloyd N. "Inverse Yogiisms." Notices of the American Mathematical Society 63, no. 11 (2016).
Also: The Best Writing on Mathematics 2017 6 (2017): 28.
Google books link.




In my own experience, I have witnessed the several negative-results theorems in




Marvin Minsky and Seymour A. Papert.
Perceptrons: An Introduction to Computational Geometry , 1969.
MIT Press.




impede progress in neural-net research for more than a decade.1




Q. What are other examples of theorems whose (correct) proofs (possibly temporarily)
suppressed research advancement in mathematical subfields?






1
Olazaran, Mikel. "A sociological study of the official history of the perceptrons controversy." Social Studies of Science 26, no. 3 (1996): 611-659.
Abstract: "[...]I devote particular attention to the proofs and arguments of Minsky and Papert, which were interpreted as showing that further progress in neural nets was not possible, and that this approach to AI had to be abandoned.[...]"
RG link.








share|cite|improve this question









$endgroup$




It may be that certain theorems, when proved true, counterintuitively retard
progress in certain domains. Lloyd Trefethen provides two examples:



  • Faber's Theorem on polynomial interpolation

  • Squire's Theorem on hydrodynamic instability


Trefethen, Lloyd N. "Inverse Yogiisms." Notices of the American Mathematical Society 63, no. 11 (2016).
Also: The Best Writing on Mathematics 2017 6 (2017): 28.
Google books link.




In my own experience, I have witnessed the several negative-results theorems in




Marvin Minsky and Seymour A. Papert.
Perceptrons: An Introduction to Computational Geometry , 1969.
MIT Press.




impede progress in neural-net research for more than a decade.1




Q. What are other examples of theorems whose (correct) proofs (possibly temporarily)
suppressed research advancement in mathematical subfields?






1
Olazaran, Mikel. "A sociological study of the official history of the perceptrons controversy." Social Studies of Science 26, no. 3 (1996): 611-659.
Abstract: "[...]I devote particular attention to the proofs and arguments of Minsky and Papert, which were interpreted as showing that further progress in neural nets was not possible, and that this approach to AI had to be abandoned.[...]"
RG link.





ho.history-overview big-picture






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









Joseph O'RourkeJoseph O'Rourke

86.2k16237709




86.2k16237709







  • 1




    $begingroup$
    I remember reading, I believe in some other MO post, about how whereas Donaldson's work on smooth 4 manifolds launched a vibrant program of research with invariants coming from physics, Freedman's contemporaneous work on topological 4 manifolds essentially ended the study of topological 4 manifolds. But maybe that's not what you mean by "impeded progress"
    $endgroup$
    – Sam Hopkins
    1 hour ago










  • $begingroup$
    @SamHopkins: I am seeking more misleading impeding, as opposed to closing off a line of investigation. Certainly when a line has terminated, that's it. But there are also misleading endings, which are not terminations afterall.
    $endgroup$
    – Joseph O'Rourke
    1 hour ago













  • 1




    $begingroup$
    I remember reading, I believe in some other MO post, about how whereas Donaldson's work on smooth 4 manifolds launched a vibrant program of research with invariants coming from physics, Freedman's contemporaneous work on topological 4 manifolds essentially ended the study of topological 4 manifolds. But maybe that's not what you mean by "impeded progress"
    $endgroup$
    – Sam Hopkins
    1 hour ago










  • $begingroup$
    @SamHopkins: I am seeking more misleading impeding, as opposed to closing off a line of investigation. Certainly when a line has terminated, that's it. But there are also misleading endings, which are not terminations afterall.
    $endgroup$
    – Joseph O'Rourke
    1 hour ago








1




1




$begingroup$
I remember reading, I believe in some other MO post, about how whereas Donaldson's work on smooth 4 manifolds launched a vibrant program of research with invariants coming from physics, Freedman's contemporaneous work on topological 4 manifolds essentially ended the study of topological 4 manifolds. But maybe that's not what you mean by "impeded progress"
$endgroup$
– Sam Hopkins
1 hour ago




$begingroup$
I remember reading, I believe in some other MO post, about how whereas Donaldson's work on smooth 4 manifolds launched a vibrant program of research with invariants coming from physics, Freedman's contemporaneous work on topological 4 manifolds essentially ended the study of topological 4 manifolds. But maybe that's not what you mean by "impeded progress"
$endgroup$
– Sam Hopkins
1 hour ago












$begingroup$
@SamHopkins: I am seeking more misleading impeding, as opposed to closing off a line of investigation. Certainly when a line has terminated, that's it. But there are also misleading endings, which are not terminations afterall.
$endgroup$
– Joseph O'Rourke
1 hour ago





$begingroup$
@SamHopkins: I am seeking more misleading impeding, as opposed to closing off a line of investigation. Certainly when a line has terminated, that's it. But there are also misleading endings, which are not terminations afterall.
$endgroup$
– Joseph O'Rourke
1 hour ago











2 Answers
2






active

oldest

votes


















5












$begingroup$

I don't know the history, but I've heard it said that the realization that higher homotopy groups are abelian lead to people thinking the notion was useless for some time.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Who realized "that higher homotopy groups are abelian"? Could you provide more details, citations?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago






  • 1




    $begingroup$
    @JosephO'Rourke: see mathoverflow.net/a/13902/25028
    $endgroup$
    – Sam Hopkins
    1 hour ago


















1












$begingroup$

Here I quote from the introduction to "Shelah’s pcf theory and its applications" by Burke and Magidor (https://core.ac.uk/download/pdf/82500424.pdf):




Cardinal arithmetic seems to be one of the central topics of set theory. (We
mean mainly cardinal exponentiation, the other operations being trivial.)
However, the independence results obtained by Cohen’s forcing technique
(especially Easton’s theorem: see below) showed that many of the open problems
in cardinal arithmetic are independent of the axioms of ZFC (Zermelo-Fraenkel
set theory with the axiom of choice). It appeared, in the late sixties, that cardinal arithmetic had become trivial in the sense that any potential theorem seemed to be refutable by the construction of a model of set theory which violated it.



In particular, Easton’s theorem showed that essentially any cardinal
arithmetic ‘behavior’ satisfying some obvious requirements can be realized as the
behavior of the power function at regular cardinals. [...]



The general consensus among set theorists was that the restriction to regular cardinals was due to a weakness in the proof and that a slight improvement in the methods for constructing models would show that, even for powers of singular cardinals, there are no deep theorems provable in ZFC.




They go on to explain how Shelah's pcf theory (and its precursors) in fact show that there are many nontrivial theorems about inequalities of cardinals provable in ZFC.



So arguably the earlier independence results impeded the discovery of these provable inequalities, although I don't know how strongly anyone would argue that.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    An explanar example of my query. Possibly Cohen's forcing was the "culprit" in jumping so far that there was a natural retraction?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327177%2ftheorems-that-impeded-progress%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

I don't know the history, but I've heard it said that the realization that higher homotopy groups are abelian lead to people thinking the notion was useless for some time.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Who realized "that higher homotopy groups are abelian"? Could you provide more details, citations?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago






  • 1




    $begingroup$
    @JosephO'Rourke: see mathoverflow.net/a/13902/25028
    $endgroup$
    – Sam Hopkins
    1 hour ago















5












$begingroup$

I don't know the history, but I've heard it said that the realization that higher homotopy groups are abelian lead to people thinking the notion was useless for some time.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Who realized "that higher homotopy groups are abelian"? Could you provide more details, citations?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago






  • 1




    $begingroup$
    @JosephO'Rourke: see mathoverflow.net/a/13902/25028
    $endgroup$
    – Sam Hopkins
    1 hour ago













5












5








5





$begingroup$

I don't know the history, but I've heard it said that the realization that higher homotopy groups are abelian lead to people thinking the notion was useless for some time.






share|cite|improve this answer











$endgroup$



I don't know the history, but I've heard it said that the realization that higher homotopy groups are abelian lead to people thinking the notion was useless for some time.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago









José Hdz. Stgo.

5,24734877




5,24734877










answered 1 hour ago









Daniel McLauryDaniel McLaury

290217




290217











  • $begingroup$
    Who realized "that higher homotopy groups are abelian"? Could you provide more details, citations?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago






  • 1




    $begingroup$
    @JosephO'Rourke: see mathoverflow.net/a/13902/25028
    $endgroup$
    – Sam Hopkins
    1 hour ago
















  • $begingroup$
    Who realized "that higher homotopy groups are abelian"? Could you provide more details, citations?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago






  • 1




    $begingroup$
    @JosephO'Rourke: see mathoverflow.net/a/13902/25028
    $endgroup$
    – Sam Hopkins
    1 hour ago















$begingroup$
Who realized "that higher homotopy groups are abelian"? Could you provide more details, citations?
$endgroup$
– Joseph O'Rourke
1 hour ago




$begingroup$
Who realized "that higher homotopy groups are abelian"? Could you provide more details, citations?
$endgroup$
– Joseph O'Rourke
1 hour ago




1




1




$begingroup$
@JosephO'Rourke: see mathoverflow.net/a/13902/25028
$endgroup$
– Sam Hopkins
1 hour ago




$begingroup$
@JosephO'Rourke: see mathoverflow.net/a/13902/25028
$endgroup$
– Sam Hopkins
1 hour ago











1












$begingroup$

Here I quote from the introduction to "Shelah’s pcf theory and its applications" by Burke and Magidor (https://core.ac.uk/download/pdf/82500424.pdf):




Cardinal arithmetic seems to be one of the central topics of set theory. (We
mean mainly cardinal exponentiation, the other operations being trivial.)
However, the independence results obtained by Cohen’s forcing technique
(especially Easton’s theorem: see below) showed that many of the open problems
in cardinal arithmetic are independent of the axioms of ZFC (Zermelo-Fraenkel
set theory with the axiom of choice). It appeared, in the late sixties, that cardinal arithmetic had become trivial in the sense that any potential theorem seemed to be refutable by the construction of a model of set theory which violated it.



In particular, Easton’s theorem showed that essentially any cardinal
arithmetic ‘behavior’ satisfying some obvious requirements can be realized as the
behavior of the power function at regular cardinals. [...]



The general consensus among set theorists was that the restriction to regular cardinals was due to a weakness in the proof and that a slight improvement in the methods for constructing models would show that, even for powers of singular cardinals, there are no deep theorems provable in ZFC.




They go on to explain how Shelah's pcf theory (and its precursors) in fact show that there are many nontrivial theorems about inequalities of cardinals provable in ZFC.



So arguably the earlier independence results impeded the discovery of these provable inequalities, although I don't know how strongly anyone would argue that.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    An explanar example of my query. Possibly Cohen's forcing was the "culprit" in jumping so far that there was a natural retraction?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago















1












$begingroup$

Here I quote from the introduction to "Shelah’s pcf theory and its applications" by Burke and Magidor (https://core.ac.uk/download/pdf/82500424.pdf):




Cardinal arithmetic seems to be one of the central topics of set theory. (We
mean mainly cardinal exponentiation, the other operations being trivial.)
However, the independence results obtained by Cohen’s forcing technique
(especially Easton’s theorem: see below) showed that many of the open problems
in cardinal arithmetic are independent of the axioms of ZFC (Zermelo-Fraenkel
set theory with the axiom of choice). It appeared, in the late sixties, that cardinal arithmetic had become trivial in the sense that any potential theorem seemed to be refutable by the construction of a model of set theory which violated it.



In particular, Easton’s theorem showed that essentially any cardinal
arithmetic ‘behavior’ satisfying some obvious requirements can be realized as the
behavior of the power function at regular cardinals. [...]



The general consensus among set theorists was that the restriction to regular cardinals was due to a weakness in the proof and that a slight improvement in the methods for constructing models would show that, even for powers of singular cardinals, there are no deep theorems provable in ZFC.




They go on to explain how Shelah's pcf theory (and its precursors) in fact show that there are many nontrivial theorems about inequalities of cardinals provable in ZFC.



So arguably the earlier independence results impeded the discovery of these provable inequalities, although I don't know how strongly anyone would argue that.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    An explanar example of my query. Possibly Cohen's forcing was the "culprit" in jumping so far that there was a natural retraction?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago













1












1








1





$begingroup$

Here I quote from the introduction to "Shelah’s pcf theory and its applications" by Burke and Magidor (https://core.ac.uk/download/pdf/82500424.pdf):




Cardinal arithmetic seems to be one of the central topics of set theory. (We
mean mainly cardinal exponentiation, the other operations being trivial.)
However, the independence results obtained by Cohen’s forcing technique
(especially Easton’s theorem: see below) showed that many of the open problems
in cardinal arithmetic are independent of the axioms of ZFC (Zermelo-Fraenkel
set theory with the axiom of choice). It appeared, in the late sixties, that cardinal arithmetic had become trivial in the sense that any potential theorem seemed to be refutable by the construction of a model of set theory which violated it.



In particular, Easton’s theorem showed that essentially any cardinal
arithmetic ‘behavior’ satisfying some obvious requirements can be realized as the
behavior of the power function at regular cardinals. [...]



The general consensus among set theorists was that the restriction to regular cardinals was due to a weakness in the proof and that a slight improvement in the methods for constructing models would show that, even for powers of singular cardinals, there are no deep theorems provable in ZFC.




They go on to explain how Shelah's pcf theory (and its precursors) in fact show that there are many nontrivial theorems about inequalities of cardinals provable in ZFC.



So arguably the earlier independence results impeded the discovery of these provable inequalities, although I don't know how strongly anyone would argue that.






share|cite|improve this answer









$endgroup$



Here I quote from the introduction to "Shelah’s pcf theory and its applications" by Burke and Magidor (https://core.ac.uk/download/pdf/82500424.pdf):




Cardinal arithmetic seems to be one of the central topics of set theory. (We
mean mainly cardinal exponentiation, the other operations being trivial.)
However, the independence results obtained by Cohen’s forcing technique
(especially Easton’s theorem: see below) showed that many of the open problems
in cardinal arithmetic are independent of the axioms of ZFC (Zermelo-Fraenkel
set theory with the axiom of choice). It appeared, in the late sixties, that cardinal arithmetic had become trivial in the sense that any potential theorem seemed to be refutable by the construction of a model of set theory which violated it.



In particular, Easton’s theorem showed that essentially any cardinal
arithmetic ‘behavior’ satisfying some obvious requirements can be realized as the
behavior of the power function at regular cardinals. [...]



The general consensus among set theorists was that the restriction to regular cardinals was due to a weakness in the proof and that a slight improvement in the methods for constructing models would show that, even for powers of singular cardinals, there are no deep theorems provable in ZFC.




They go on to explain how Shelah's pcf theory (and its precursors) in fact show that there are many nontrivial theorems about inequalities of cardinals provable in ZFC.



So arguably the earlier independence results impeded the discovery of these provable inequalities, although I don't know how strongly anyone would argue that.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 1 hour ago









Sam HopkinsSam Hopkins

5,00212557




5,00212557











  • $begingroup$
    An explanar example of my query. Possibly Cohen's forcing was the "culprit" in jumping so far that there was a natural retraction?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago
















  • $begingroup$
    An explanar example of my query. Possibly Cohen's forcing was the "culprit" in jumping so far that there was a natural retraction?
    $endgroup$
    – Joseph O'Rourke
    1 hour ago















$begingroup$
An explanar example of my query. Possibly Cohen's forcing was the "culprit" in jumping so far that there was a natural retraction?
$endgroup$
– Joseph O'Rourke
1 hour ago




$begingroup$
An explanar example of my query. Possibly Cohen's forcing was the "culprit" in jumping so far that there was a natural retraction?
$endgroup$
– Joseph O'Rourke
1 hour ago

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327177%2ftheorems-that-impeded-progress%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"