How does quantile regression compare to logistic regression with the variable split at the quantile?Analyzing Logistic Regression when not using a dichotomous dependent variableEstimating logistic regression coefficients in a case-control design when the outcome variable is not case/control statusWhen does quantile regression produce biased coefficients (if ever)?How can I account for a nonlinear variable in a logistic regression?Variable Selection for Logistic regressionlogistic regression: the relation between sample proportion and prediction?How to compare the performance of two classification methods? (logistic regression and classification trees)Unbalanced Design with a Large Data Set and Logistic RegressionFit logistic regression with linear constraints on coefficients in RLogistic regression with double censored independent variable

Why doesn't H₄O²⁺ exist?

How to determine what difficulty is right for the game?

What typically incentivizes a professor to change jobs to a lower ranking university?

dbcc cleantable batch size explanation

Do I have a twin with permutated remainders?

Can a monk's single staff be considered dual wielded, as per the Dual Wielder feat?

Are the number of citations and number of published articles the most important criteria for a tenure promotion?

NMaximize is not converging to a solution

Does object always see its latest internal state irrespective of thread?

Is it unprofessional to ask if a job posting on GlassDoor is real?

Codimension of non-flat locus

Does detail obscure or enhance action?

Do other languages have an "irreversible aspect"?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

DC-DC converter from low voltage at high current, to high voltage at low current

How can bays and straits be determined in a procedurally generated map?

"You are your self first supporter", a more proper way to say it

Modeling an IP Address

High voltage LED indicator 40-1000 VDC without additional power supply

How old can references or sources in a thesis be?

Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?

Can I make popcorn with any corn?

Replacing matching entries in one column of a file by another column from a different file

Rock identification in KY



How does quantile regression compare to logistic regression with the variable split at the quantile?


Analyzing Logistic Regression when not using a dichotomous dependent variableEstimating logistic regression coefficients in a case-control design when the outcome variable is not case/control statusWhen does quantile regression produce biased coefficients (if ever)?How can I account for a nonlinear variable in a logistic regression?Variable Selection for Logistic regressionlogistic regression: the relation between sample proportion and prediction?How to compare the performance of two classification methods? (logistic regression and classification trees)Unbalanced Design with a Large Data Set and Logistic RegressionFit logistic regression with linear constraints on coefficients in RLogistic regression with double censored independent variable






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


I googled a bit but didn't find anything on this.



Suppose you do a quantile regression on the qth quantile of the dependent variable.



Then you split the DV at the qth quantile and label the result 0 and 1. Then you do logistic regression on the categorized DV.



I'm looking for any Monte-Carlo studies of this or reasons to prefer one over the other etc.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Could you show us any reasonable way even to compare the results of the two regressions? After all, unless you have something a little less general in mind, the coefficients of the regressors in these two models have entirely different meanings and interpretations, so in what sense are we to understand what you mean by "prefer"?
    $endgroup$
    – whuber
    1 hour ago

















5












$begingroup$


I googled a bit but didn't find anything on this.



Suppose you do a quantile regression on the qth quantile of the dependent variable.



Then you split the DV at the qth quantile and label the result 0 and 1. Then you do logistic regression on the categorized DV.



I'm looking for any Monte-Carlo studies of this or reasons to prefer one over the other etc.










share|cite|improve this question









$endgroup$











  • $begingroup$
    Could you show us any reasonable way even to compare the results of the two regressions? After all, unless you have something a little less general in mind, the coefficients of the regressors in these two models have entirely different meanings and interpretations, so in what sense are we to understand what you mean by "prefer"?
    $endgroup$
    – whuber
    1 hour ago













5












5








5


1



$begingroup$


I googled a bit but didn't find anything on this.



Suppose you do a quantile regression on the qth quantile of the dependent variable.



Then you split the DV at the qth quantile and label the result 0 and 1. Then you do logistic regression on the categorized DV.



I'm looking for any Monte-Carlo studies of this or reasons to prefer one over the other etc.










share|cite|improve this question









$endgroup$




I googled a bit but didn't find anything on this.



Suppose you do a quantile regression on the qth quantile of the dependent variable.



Then you split the DV at the qth quantile and label the result 0 and 1. Then you do logistic regression on the categorized DV.



I'm looking for any Monte-Carlo studies of this or reasons to prefer one over the other etc.







logistic quantile-regression






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









Peter FlomPeter Flom

77k12109215




77k12109215











  • $begingroup$
    Could you show us any reasonable way even to compare the results of the two regressions? After all, unless you have something a little less general in mind, the coefficients of the regressors in these two models have entirely different meanings and interpretations, so in what sense are we to understand what you mean by "prefer"?
    $endgroup$
    – whuber
    1 hour ago
















  • $begingroup$
    Could you show us any reasonable way even to compare the results of the two regressions? After all, unless you have something a little less general in mind, the coefficients of the regressors in these two models have entirely different meanings and interpretations, so in what sense are we to understand what you mean by "prefer"?
    $endgroup$
    – whuber
    1 hour ago















$begingroup$
Could you show us any reasonable way even to compare the results of the two regressions? After all, unless you have something a little less general in mind, the coefficients of the regressors in these two models have entirely different meanings and interpretations, so in what sense are we to understand what you mean by "prefer"?
$endgroup$
– whuber
1 hour ago




$begingroup$
Could you show us any reasonable way even to compare the results of the two regressions? After all, unless you have something a little less general in mind, the coefficients of the regressors in these two models have entirely different meanings and interpretations, so in what sense are we to understand what you mean by "prefer"?
$endgroup$
– whuber
1 hour ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

For simplicity, assume you have a continuous dependent variable Y and a continuous predictor variable X.



Logistic Regression



If I understand your post correctly, your logistic regression will categorize Y into 0 and 1 based on the quantile of the (unconditional) distribution of Y. Specifically, the q-th quantile of the distribution of observed Y values will be computed and Ycat will be defined as 0 if Y is strictly less than this quantile and 1 if Y is greater than or equal to this quantile.



If the above captures your intent, then the logistic regression will model the odds of Y exceeding or being equal to the (observed) q-th quantile of the (unconditional) Y distribution as a function of X.



** Quantile Regression**



On the other hand, if you are performing a quantile regression of Y on X, you are focusing on modelling how the q-th quantile of the conditional distribution of Y given X changes as a function of X.



Logistic Regression versus Quantile Regression



It seems to me that these two procedures have totally different aims, since the first procedure (i.e., logistic regression) focuses on the q-th quantile of the unconditional distribution of Y, whereas the second procedure (i.e., quantile regression) focuses on the the q-th quantile of the conditional distribution of Y.



The unconditional distribution of Y is the 
distribution of Y values (hence it ignores any
information about the X values).

The conditional distribution of Y given X is the
distribution of those Y values for which the values
of X are the same.


Illustrative Example



For illustration purposes, let's say Y = cholesterol and X = body weight.



Then logistic regression is modelling the odds of having a 'high' cholesterol value (i.e., greater than or equal to the q-th quantile of the observed cholesterol values) as a function of body weight, where the definition of 'high' has no relation to body weight. In other words, the marker for what constitutes a 'high' cholesterol value is independent of body weight. What changes with body weight in this model is the odds that a cholesterol value would exceed this marker.



On the other hand, quantile regression is looking at how the 'marker' cholesterol values for which q% of the subjects with the same body weight in the underlying population have a higher cholesterol value vary as a function of body weight. You can think of these cholesterol values as markers for identifying what cholesterol values are 'high' - but in this case, each marker depends on the corresponding body weight; furthermore, the markers are assumed to change in a predictable fashion as the value of X changes (e.g., the markers tend to increase as X increases).






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    I agree with all that. Yet, there does seem to be a similarity - that is, both look at the qth quantile as a function of the same independent variables.
    $endgroup$
    – Peter Flom
    1 hour ago






  • 2




    $begingroup$
    Yes, but the difference is that one method looks at the unconditional quantile (i.e., logistic regression) while the other looks at the conditional quantile (i.e., quantile regression). Those two quantiles keep track of different things.
    $endgroup$
    – Isabella Ghement
    1 hour ago


















0












$begingroup$

They won't be equal, and the reason is simple.



With quantile regression you want to model the quantile conditional of the independent variables. Your approach with logistic regression fits the marginal quantile.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401421%2fhow-does-quantile-regression-compare-to-logistic-regression-with-the-variable-sp%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    For simplicity, assume you have a continuous dependent variable Y and a continuous predictor variable X.



    Logistic Regression



    If I understand your post correctly, your logistic regression will categorize Y into 0 and 1 based on the quantile of the (unconditional) distribution of Y. Specifically, the q-th quantile of the distribution of observed Y values will be computed and Ycat will be defined as 0 if Y is strictly less than this quantile and 1 if Y is greater than or equal to this quantile.



    If the above captures your intent, then the logistic regression will model the odds of Y exceeding or being equal to the (observed) q-th quantile of the (unconditional) Y distribution as a function of X.



    ** Quantile Regression**



    On the other hand, if you are performing a quantile regression of Y on X, you are focusing on modelling how the q-th quantile of the conditional distribution of Y given X changes as a function of X.



    Logistic Regression versus Quantile Regression



    It seems to me that these two procedures have totally different aims, since the first procedure (i.e., logistic regression) focuses on the q-th quantile of the unconditional distribution of Y, whereas the second procedure (i.e., quantile regression) focuses on the the q-th quantile of the conditional distribution of Y.



    The unconditional distribution of Y is the 
    distribution of Y values (hence it ignores any
    information about the X values).

    The conditional distribution of Y given X is the
    distribution of those Y values for which the values
    of X are the same.


    Illustrative Example



    For illustration purposes, let's say Y = cholesterol and X = body weight.



    Then logistic regression is modelling the odds of having a 'high' cholesterol value (i.e., greater than or equal to the q-th quantile of the observed cholesterol values) as a function of body weight, where the definition of 'high' has no relation to body weight. In other words, the marker for what constitutes a 'high' cholesterol value is independent of body weight. What changes with body weight in this model is the odds that a cholesterol value would exceed this marker.



    On the other hand, quantile regression is looking at how the 'marker' cholesterol values for which q% of the subjects with the same body weight in the underlying population have a higher cholesterol value vary as a function of body weight. You can think of these cholesterol values as markers for identifying what cholesterol values are 'high' - but in this case, each marker depends on the corresponding body weight; furthermore, the markers are assumed to change in a predictable fashion as the value of X changes (e.g., the markers tend to increase as X increases).






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      I agree with all that. Yet, there does seem to be a similarity - that is, both look at the qth quantile as a function of the same independent variables.
      $endgroup$
      – Peter Flom
      1 hour ago






    • 2




      $begingroup$
      Yes, but the difference is that one method looks at the unconditional quantile (i.e., logistic regression) while the other looks at the conditional quantile (i.e., quantile regression). Those two quantiles keep track of different things.
      $endgroup$
      – Isabella Ghement
      1 hour ago















    4












    $begingroup$

    For simplicity, assume you have a continuous dependent variable Y and a continuous predictor variable X.



    Logistic Regression



    If I understand your post correctly, your logistic regression will categorize Y into 0 and 1 based on the quantile of the (unconditional) distribution of Y. Specifically, the q-th quantile of the distribution of observed Y values will be computed and Ycat will be defined as 0 if Y is strictly less than this quantile and 1 if Y is greater than or equal to this quantile.



    If the above captures your intent, then the logistic regression will model the odds of Y exceeding or being equal to the (observed) q-th quantile of the (unconditional) Y distribution as a function of X.



    ** Quantile Regression**



    On the other hand, if you are performing a quantile regression of Y on X, you are focusing on modelling how the q-th quantile of the conditional distribution of Y given X changes as a function of X.



    Logistic Regression versus Quantile Regression



    It seems to me that these two procedures have totally different aims, since the first procedure (i.e., logistic regression) focuses on the q-th quantile of the unconditional distribution of Y, whereas the second procedure (i.e., quantile regression) focuses on the the q-th quantile of the conditional distribution of Y.



    The unconditional distribution of Y is the 
    distribution of Y values (hence it ignores any
    information about the X values).

    The conditional distribution of Y given X is the
    distribution of those Y values for which the values
    of X are the same.


    Illustrative Example



    For illustration purposes, let's say Y = cholesterol and X = body weight.



    Then logistic regression is modelling the odds of having a 'high' cholesterol value (i.e., greater than or equal to the q-th quantile of the observed cholesterol values) as a function of body weight, where the definition of 'high' has no relation to body weight. In other words, the marker for what constitutes a 'high' cholesterol value is independent of body weight. What changes with body weight in this model is the odds that a cholesterol value would exceed this marker.



    On the other hand, quantile regression is looking at how the 'marker' cholesterol values for which q% of the subjects with the same body weight in the underlying population have a higher cholesterol value vary as a function of body weight. You can think of these cholesterol values as markers for identifying what cholesterol values are 'high' - but in this case, each marker depends on the corresponding body weight; furthermore, the markers are assumed to change in a predictable fashion as the value of X changes (e.g., the markers tend to increase as X increases).






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      I agree with all that. Yet, there does seem to be a similarity - that is, both look at the qth quantile as a function of the same independent variables.
      $endgroup$
      – Peter Flom
      1 hour ago






    • 2




      $begingroup$
      Yes, but the difference is that one method looks at the unconditional quantile (i.e., logistic regression) while the other looks at the conditional quantile (i.e., quantile regression). Those two quantiles keep track of different things.
      $endgroup$
      – Isabella Ghement
      1 hour ago













    4












    4








    4





    $begingroup$

    For simplicity, assume you have a continuous dependent variable Y and a continuous predictor variable X.



    Logistic Regression



    If I understand your post correctly, your logistic regression will categorize Y into 0 and 1 based on the quantile of the (unconditional) distribution of Y. Specifically, the q-th quantile of the distribution of observed Y values will be computed and Ycat will be defined as 0 if Y is strictly less than this quantile and 1 if Y is greater than or equal to this quantile.



    If the above captures your intent, then the logistic regression will model the odds of Y exceeding or being equal to the (observed) q-th quantile of the (unconditional) Y distribution as a function of X.



    ** Quantile Regression**



    On the other hand, if you are performing a quantile regression of Y on X, you are focusing on modelling how the q-th quantile of the conditional distribution of Y given X changes as a function of X.



    Logistic Regression versus Quantile Regression



    It seems to me that these two procedures have totally different aims, since the first procedure (i.e., logistic regression) focuses on the q-th quantile of the unconditional distribution of Y, whereas the second procedure (i.e., quantile regression) focuses on the the q-th quantile of the conditional distribution of Y.



    The unconditional distribution of Y is the 
    distribution of Y values (hence it ignores any
    information about the X values).

    The conditional distribution of Y given X is the
    distribution of those Y values for which the values
    of X are the same.


    Illustrative Example



    For illustration purposes, let's say Y = cholesterol and X = body weight.



    Then logistic regression is modelling the odds of having a 'high' cholesterol value (i.e., greater than or equal to the q-th quantile of the observed cholesterol values) as a function of body weight, where the definition of 'high' has no relation to body weight. In other words, the marker for what constitutes a 'high' cholesterol value is independent of body weight. What changes with body weight in this model is the odds that a cholesterol value would exceed this marker.



    On the other hand, quantile regression is looking at how the 'marker' cholesterol values for which q% of the subjects with the same body weight in the underlying population have a higher cholesterol value vary as a function of body weight. You can think of these cholesterol values as markers for identifying what cholesterol values are 'high' - but in this case, each marker depends on the corresponding body weight; furthermore, the markers are assumed to change in a predictable fashion as the value of X changes (e.g., the markers tend to increase as X increases).






    share|cite|improve this answer











    $endgroup$



    For simplicity, assume you have a continuous dependent variable Y and a continuous predictor variable X.



    Logistic Regression



    If I understand your post correctly, your logistic regression will categorize Y into 0 and 1 based on the quantile of the (unconditional) distribution of Y. Specifically, the q-th quantile of the distribution of observed Y values will be computed and Ycat will be defined as 0 if Y is strictly less than this quantile and 1 if Y is greater than or equal to this quantile.



    If the above captures your intent, then the logistic regression will model the odds of Y exceeding or being equal to the (observed) q-th quantile of the (unconditional) Y distribution as a function of X.



    ** Quantile Regression**



    On the other hand, if you are performing a quantile regression of Y on X, you are focusing on modelling how the q-th quantile of the conditional distribution of Y given X changes as a function of X.



    Logistic Regression versus Quantile Regression



    It seems to me that these two procedures have totally different aims, since the first procedure (i.e., logistic regression) focuses on the q-th quantile of the unconditional distribution of Y, whereas the second procedure (i.e., quantile regression) focuses on the the q-th quantile of the conditional distribution of Y.



    The unconditional distribution of Y is the 
    distribution of Y values (hence it ignores any
    information about the X values).

    The conditional distribution of Y given X is the
    distribution of those Y values for which the values
    of X are the same.


    Illustrative Example



    For illustration purposes, let's say Y = cholesterol and X = body weight.



    Then logistic regression is modelling the odds of having a 'high' cholesterol value (i.e., greater than or equal to the q-th quantile of the observed cholesterol values) as a function of body weight, where the definition of 'high' has no relation to body weight. In other words, the marker for what constitutes a 'high' cholesterol value is independent of body weight. What changes with body weight in this model is the odds that a cholesterol value would exceed this marker.



    On the other hand, quantile regression is looking at how the 'marker' cholesterol values for which q% of the subjects with the same body weight in the underlying population have a higher cholesterol value vary as a function of body weight. You can think of these cholesterol values as markers for identifying what cholesterol values are 'high' - but in this case, each marker depends on the corresponding body weight; furthermore, the markers are assumed to change in a predictable fashion as the value of X changes (e.g., the markers tend to increase as X increases).







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 1 hour ago

























    answered 2 hours ago









    Isabella GhementIsabella Ghement

    7,823422




    7,823422







    • 1




      $begingroup$
      I agree with all that. Yet, there does seem to be a similarity - that is, both look at the qth quantile as a function of the same independent variables.
      $endgroup$
      – Peter Flom
      1 hour ago






    • 2




      $begingroup$
      Yes, but the difference is that one method looks at the unconditional quantile (i.e., logistic regression) while the other looks at the conditional quantile (i.e., quantile regression). Those two quantiles keep track of different things.
      $endgroup$
      – Isabella Ghement
      1 hour ago












    • 1




      $begingroup$
      I agree with all that. Yet, there does seem to be a similarity - that is, both look at the qth quantile as a function of the same independent variables.
      $endgroup$
      – Peter Flom
      1 hour ago






    • 2




      $begingroup$
      Yes, but the difference is that one method looks at the unconditional quantile (i.e., logistic regression) while the other looks at the conditional quantile (i.e., quantile regression). Those two quantiles keep track of different things.
      $endgroup$
      – Isabella Ghement
      1 hour ago







    1




    1




    $begingroup$
    I agree with all that. Yet, there does seem to be a similarity - that is, both look at the qth quantile as a function of the same independent variables.
    $endgroup$
    – Peter Flom
    1 hour ago




    $begingroup$
    I agree with all that. Yet, there does seem to be a similarity - that is, both look at the qth quantile as a function of the same independent variables.
    $endgroup$
    – Peter Flom
    1 hour ago




    2




    2




    $begingroup$
    Yes, but the difference is that one method looks at the unconditional quantile (i.e., logistic regression) while the other looks at the conditional quantile (i.e., quantile regression). Those two quantiles keep track of different things.
    $endgroup$
    – Isabella Ghement
    1 hour ago




    $begingroup$
    Yes, but the difference is that one method looks at the unconditional quantile (i.e., logistic regression) while the other looks at the conditional quantile (i.e., quantile regression). Those two quantiles keep track of different things.
    $endgroup$
    – Isabella Ghement
    1 hour ago













    0












    $begingroup$

    They won't be equal, and the reason is simple.



    With quantile regression you want to model the quantile conditional of the independent variables. Your approach with logistic regression fits the marginal quantile.






    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      They won't be equal, and the reason is simple.



      With quantile regression you want to model the quantile conditional of the independent variables. Your approach with logistic regression fits the marginal quantile.






      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        They won't be equal, and the reason is simple.



        With quantile regression you want to model the quantile conditional of the independent variables. Your approach with logistic regression fits the marginal quantile.






        share|cite|improve this answer









        $endgroup$



        They won't be equal, and the reason is simple.



        With quantile regression you want to model the quantile conditional of the independent variables. Your approach with logistic regression fits the marginal quantile.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 30 mins ago









        FirebugFirebug

        7,72923280




        7,72923280



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401421%2fhow-does-quantile-regression-compare-to-logistic-regression-with-the-variable-sp%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

            Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

            Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"