Definite integral giving negative value as a result?Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral
Cross compiling for RPi - error while loading shared libraries
Add text to same line using sed
Is it possible to run Internet Explorer on OS X El Capitan?
A case of the sniffles
Character reincarnated...as a snail
How old can references or sources in a thesis be?
Arrow those variables!
Could an aircraft fly or hover using only jets of compressed air?
LaTeX: Why are digits allowed in environments, but forbidden in commands?
Fully-Firstable Anagram Sets
When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?
How is it possible to have an ability score that is less than 3?
How does one intimidate enemies without having the capacity for violence?
Has there ever been an airliner design involving reducing generator load by installing solar panels?
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
Can a Cauchy sequence converge for one metric while not converging for another?
Languages that we cannot (dis)prove to be Context-Free
What is a clear way to write a bar that has an extra beat?
How to determine what difficulty is right for the game?
What defenses are there against being summoned by the Gate spell?
Why does Kotter return in Welcome Back Kotter?
Was any UN Security Council vote triple-vetoed?
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Why is consensus so controversial in Britain?
Definite integral giving negative value as a result?
Why do I get a negative value for this integral?Solving a definite integralReal integral giving a complex resultProgression from indefinite integral to definite integral - $int_0^2pifrac15-3cos x dx$Calculation of definite integralWithout calculating the integral decide if integral is positive or negative / which integral is bigger?Definite integral of absolute value function?Variable substitution in definite integralDefinite integral over singularityInner Product, Definite Integral
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
|
show 2 more comments
$begingroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
$endgroup$
I want to calculate definite integral
$$int_-2^-1 frac1x^2e^frac1x dx = Omega$$
$$int frac1x^2e^frac1x dx=-e^frac1x+C$$
so:
$$Omega = [-e^frac1-2]-[-e^frac1-1]=-frac1sqrte + frac1e$$
which is a negative value. I believe it should be positive.
What went wrong in the process?
calculus integration definite-integrals
calculus integration definite-integrals
edited 4 hours ago
Eevee Trainer
9,92931740
9,92931740
asked 4 hours ago
wenoweno
39611
39611
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
|
show 2 more comments
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
2
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago
5
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
add a comment |
$begingroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
$endgroup$
What you effectively did was swap the order of evaluation for the fundamental theorem of calculus. Recall:
$$int_a^b f(x)dx = F(b) - F(a)$$
when the antiderivative of $f$ is $F$. You instead have $F(a) - F(b)$ ($a=-2,b=-1$) in this case. The end result is merely a sign error - you have precisely the negative of the answer which you should expect.
answered 4 hours ago
Eevee TrainerEevee Trainer
9,92931740
9,92931740
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176540%2fdefinite-integral-giving-negative-value-as-a-result%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
How exactly did you go about calculating the antiderivative? Wolfram Alpha gives a much different result.
$endgroup$
– Eevee Trainer
4 hours ago
2
$begingroup$
Your antiderivative is completely incorrect: The derivative of $e^1/x^2$ is $e^1/x^2 / (-x^3)$. The red flag that you found is indeed a correct one, and shows that your answer cannot be right. This is a good thing to check.
$endgroup$
– T. Bongers
4 hours ago
$begingroup$
Thanks. I have fixed it now. I meant $int frac1x^2 e^frac1xdx$.
$endgroup$
– weno
4 hours ago
5
$begingroup$
You flipped the interval's endpoints. $-2<-1$
$endgroup$
– mr_e_man
4 hours ago
$begingroup$
And just to confirm, taking account of @mr_e_man’s comment above, your work seems correct.
$endgroup$
– Lubin
4 hours ago