Concept of linear mappings are confusing meChange of Basis ConfusionProve that a linear map for complex polynomials is diagonalizableEigenvalues of three given linear operatorsTransforming coordinate system vs objectsCan an $ntimes n$ matrix be reduced to a smaller matrix in any sense?Overview of Linear AlgebraLinear Transformation vs MatrixPruning SubsetsChange of basis formula - intuition/is this true?Linear Algebra:Vector Space

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Motorized valve interfering with button?

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

Extreme, but not acceptable situation and I can't start the work tomorrow morning

Are tax years 2016 & 2017 back taxes deductible for tax year 2018?

Infinite past with a beginning?

Chess with symmetric move-square

What makes Graph invariants so useful/important?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

I see my dog run

Is there really no realistic way for a skeleton monster to move around without magic?

"which" command doesn't work / path of Safari?

Should I join office cleaning event for free?

Do airline pilots ever risk not hearing communication directed to them specifically, from traffic controllers?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Is it possible to do 50 km distance without any previous training?

How can the DM most effectively choose 1 out of an odd number of players to be targeted by an attack or effect?

Prevent a directory in /tmp from being deleted

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

How old can references or sources in a thesis be?

Can I make popcorn with any corn?

How to make payment on the internet without leaving a money trail?

Can a German sentence have two subjects?

Why Is Death Allowed In the Matrix?



Concept of linear mappings are confusing me


Change of Basis ConfusionProve that a linear map for complex polynomials is diagonalizableEigenvalues of three given linear operatorsTransforming coordinate system vs objectsCan an $ntimes n$ matrix be reduced to a smaller matrix in any sense?Overview of Linear AlgebraLinear Transformation vs MatrixPruning SubsetsChange of basis formula - intuition/is this true?Linear Algebra:Vector Space













5












$begingroup$


I'm so confused on how we can have a 2x3 matrix A, multiply it by a vector in $Bbb R^3$ and then end up with a vector in $Bbb R^2$. Is it possible to visualize this at all or do I need to sort of blindly accept this concept as facts that I'll accept and use?
Can someone give a very brief summarization on why this makes sense? Because I just see it as, in a world (dimension) in $Bbb R^3$, we multiply it by a vector in $Bbb R^3$, and out pops a vector in $Bbb R^2$.



Thanks!










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    maybe think of multiplying a matrix by a vector as a special case of multiplying a matrix by a matrix
    $endgroup$
    – J. W. Tanner
    1 hour ago










  • $begingroup$
    Is it the definition of matrix multiplication that gives you trouble? Have you tried doing a multiplication and seeing what you get? Do you understand that we can have a function like $f(x,y,z)=(x-2y+z, 2x+4y-z)$ which maps $mathbb R^3$ to $mathbb R^2$?
    $endgroup$
    – John Douma
    58 mins ago
















5












$begingroup$


I'm so confused on how we can have a 2x3 matrix A, multiply it by a vector in $Bbb R^3$ and then end up with a vector in $Bbb R^2$. Is it possible to visualize this at all or do I need to sort of blindly accept this concept as facts that I'll accept and use?
Can someone give a very brief summarization on why this makes sense? Because I just see it as, in a world (dimension) in $Bbb R^3$, we multiply it by a vector in $Bbb R^3$, and out pops a vector in $Bbb R^2$.



Thanks!










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    maybe think of multiplying a matrix by a vector as a special case of multiplying a matrix by a matrix
    $endgroup$
    – J. W. Tanner
    1 hour ago










  • $begingroup$
    Is it the definition of matrix multiplication that gives you trouble? Have you tried doing a multiplication and seeing what you get? Do you understand that we can have a function like $f(x,y,z)=(x-2y+z, 2x+4y-z)$ which maps $mathbb R^3$ to $mathbb R^2$?
    $endgroup$
    – John Douma
    58 mins ago














5












5








5





$begingroup$


I'm so confused on how we can have a 2x3 matrix A, multiply it by a vector in $Bbb R^3$ and then end up with a vector in $Bbb R^2$. Is it possible to visualize this at all or do I need to sort of blindly accept this concept as facts that I'll accept and use?
Can someone give a very brief summarization on why this makes sense? Because I just see it as, in a world (dimension) in $Bbb R^3$, we multiply it by a vector in $Bbb R^3$, and out pops a vector in $Bbb R^2$.



Thanks!










share|cite|improve this question









$endgroup$




I'm so confused on how we can have a 2x3 matrix A, multiply it by a vector in $Bbb R^3$ and then end up with a vector in $Bbb R^2$. Is it possible to visualize this at all or do I need to sort of blindly accept this concept as facts that I'll accept and use?
Can someone give a very brief summarization on why this makes sense? Because I just see it as, in a world (dimension) in $Bbb R^3$, we multiply it by a vector in $Bbb R^3$, and out pops a vector in $Bbb R^2$.



Thanks!







linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









mingming

4306




4306







  • 1




    $begingroup$
    maybe think of multiplying a matrix by a vector as a special case of multiplying a matrix by a matrix
    $endgroup$
    – J. W. Tanner
    1 hour ago










  • $begingroup$
    Is it the definition of matrix multiplication that gives you trouble? Have you tried doing a multiplication and seeing what you get? Do you understand that we can have a function like $f(x,y,z)=(x-2y+z, 2x+4y-z)$ which maps $mathbb R^3$ to $mathbb R^2$?
    $endgroup$
    – John Douma
    58 mins ago













  • 1




    $begingroup$
    maybe think of multiplying a matrix by a vector as a special case of multiplying a matrix by a matrix
    $endgroup$
    – J. W. Tanner
    1 hour ago










  • $begingroup$
    Is it the definition of matrix multiplication that gives you trouble? Have you tried doing a multiplication and seeing what you get? Do you understand that we can have a function like $f(x,y,z)=(x-2y+z, 2x+4y-z)$ which maps $mathbb R^3$ to $mathbb R^2$?
    $endgroup$
    – John Douma
    58 mins ago








1




1




$begingroup$
maybe think of multiplying a matrix by a vector as a special case of multiplying a matrix by a matrix
$endgroup$
– J. W. Tanner
1 hour ago




$begingroup$
maybe think of multiplying a matrix by a vector as a special case of multiplying a matrix by a matrix
$endgroup$
– J. W. Tanner
1 hour ago












$begingroup$
Is it the definition of matrix multiplication that gives you trouble? Have you tried doing a multiplication and seeing what you get? Do you understand that we can have a function like $f(x,y,z)=(x-2y+z, 2x+4y-z)$ which maps $mathbb R^3$ to $mathbb R^2$?
$endgroup$
– John Douma
58 mins ago





$begingroup$
Is it the definition of matrix multiplication that gives you trouble? Have you tried doing a multiplication and seeing what you get? Do you understand that we can have a function like $f(x,y,z)=(x-2y+z, 2x+4y-z)$ which maps $mathbb R^3$ to $mathbb R^2$?
$endgroup$
– John Douma
58 mins ago











2 Answers
2






active

oldest

votes


















2












$begingroup$

For the moment don't think about multiplication and matrices.



You can imagine starting from a vector $(x,y,z)$ in $mathbbR^3$ and mapping it to a vector in $mathbbR^2$ this way, for example:
$$
(x, y, z) mapsto (2x+ z, 3x+ 4y).
$$



Mathematicians have invented a nice clean way to write that map. It's the formalism you've learned for matrix multiplication. To see what $(1,2,3)$ maps to, calculate the matrix product
$$
beginbmatrix
2 & 0 & 1 \
3 & 4 & 0
endbmatrix
beginbmatrix
1 \
2 \
3
endbmatrix
=
beginbmatrix
5\
11
endbmatrix.
$$



You will soon be comfortable with this, just as you are now with whatever algorithm you were taught for ordinary multiplication. Then you will be free to focus on understanding what maps like this are useful for.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    A linear mapping has the property that it maps subspaces to subspaces.



    So it will map a line to a line or $0$, a plane to a plane, a line, or $0$, and so on.



    By definition, linear mappings “play nice” with addition and scaling. These properties allow us to reduce statements about entire vector spaces down to bases, which are quite “small” in the finite dimensional case.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179032%2fconcept-of-linear-mappings-are-confusing-me%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      For the moment don't think about multiplication and matrices.



      You can imagine starting from a vector $(x,y,z)$ in $mathbbR^3$ and mapping it to a vector in $mathbbR^2$ this way, for example:
      $$
      (x, y, z) mapsto (2x+ z, 3x+ 4y).
      $$



      Mathematicians have invented a nice clean way to write that map. It's the formalism you've learned for matrix multiplication. To see what $(1,2,3)$ maps to, calculate the matrix product
      $$
      beginbmatrix
      2 & 0 & 1 \
      3 & 4 & 0
      endbmatrix
      beginbmatrix
      1 \
      2 \
      3
      endbmatrix
      =
      beginbmatrix
      5\
      11
      endbmatrix.
      $$



      You will soon be comfortable with this, just as you are now with whatever algorithm you were taught for ordinary multiplication. Then you will be free to focus on understanding what maps like this are useful for.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        For the moment don't think about multiplication and matrices.



        You can imagine starting from a vector $(x,y,z)$ in $mathbbR^3$ and mapping it to a vector in $mathbbR^2$ this way, for example:
        $$
        (x, y, z) mapsto (2x+ z, 3x+ 4y).
        $$



        Mathematicians have invented a nice clean way to write that map. It's the formalism you've learned for matrix multiplication. To see what $(1,2,3)$ maps to, calculate the matrix product
        $$
        beginbmatrix
        2 & 0 & 1 \
        3 & 4 & 0
        endbmatrix
        beginbmatrix
        1 \
        2 \
        3
        endbmatrix
        =
        beginbmatrix
        5\
        11
        endbmatrix.
        $$



        You will soon be comfortable with this, just as you are now with whatever algorithm you were taught for ordinary multiplication. Then you will be free to focus on understanding what maps like this are useful for.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          For the moment don't think about multiplication and matrices.



          You can imagine starting from a vector $(x,y,z)$ in $mathbbR^3$ and mapping it to a vector in $mathbbR^2$ this way, for example:
          $$
          (x, y, z) mapsto (2x+ z, 3x+ 4y).
          $$



          Mathematicians have invented a nice clean way to write that map. It's the formalism you've learned for matrix multiplication. To see what $(1,2,3)$ maps to, calculate the matrix product
          $$
          beginbmatrix
          2 & 0 & 1 \
          3 & 4 & 0
          endbmatrix
          beginbmatrix
          1 \
          2 \
          3
          endbmatrix
          =
          beginbmatrix
          5\
          11
          endbmatrix.
          $$



          You will soon be comfortable with this, just as you are now with whatever algorithm you were taught for ordinary multiplication. Then you will be free to focus on understanding what maps like this are useful for.






          share|cite|improve this answer









          $endgroup$



          For the moment don't think about multiplication and matrices.



          You can imagine starting from a vector $(x,y,z)$ in $mathbbR^3$ and mapping it to a vector in $mathbbR^2$ this way, for example:
          $$
          (x, y, z) mapsto (2x+ z, 3x+ 4y).
          $$



          Mathematicians have invented a nice clean way to write that map. It's the formalism you've learned for matrix multiplication. To see what $(1,2,3)$ maps to, calculate the matrix product
          $$
          beginbmatrix
          2 & 0 & 1 \
          3 & 4 & 0
          endbmatrix
          beginbmatrix
          1 \
          2 \
          3
          endbmatrix
          =
          beginbmatrix
          5\
          11
          endbmatrix.
          $$



          You will soon be comfortable with this, just as you are now with whatever algorithm you were taught for ordinary multiplication. Then you will be free to focus on understanding what maps like this are useful for.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 58 mins ago









          Ethan BolkerEthan Bolker

          45.8k553120




          45.8k553120





















              0












              $begingroup$

              A linear mapping has the property that it maps subspaces to subspaces.



              So it will map a line to a line or $0$, a plane to a plane, a line, or $0$, and so on.



              By definition, linear mappings “play nice” with addition and scaling. These properties allow us to reduce statements about entire vector spaces down to bases, which are quite “small” in the finite dimensional case.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                A linear mapping has the property that it maps subspaces to subspaces.



                So it will map a line to a line or $0$, a plane to a plane, a line, or $0$, and so on.



                By definition, linear mappings “play nice” with addition and scaling. These properties allow us to reduce statements about entire vector spaces down to bases, which are quite “small” in the finite dimensional case.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  A linear mapping has the property that it maps subspaces to subspaces.



                  So it will map a line to a line or $0$, a plane to a plane, a line, or $0$, and so on.



                  By definition, linear mappings “play nice” with addition and scaling. These properties allow us to reduce statements about entire vector spaces down to bases, which are quite “small” in the finite dimensional case.






                  share|cite|improve this answer









                  $endgroup$



                  A linear mapping has the property that it maps subspaces to subspaces.



                  So it will map a line to a line or $0$, a plane to a plane, a line, or $0$, and so on.



                  By definition, linear mappings “play nice” with addition and scaling. These properties allow us to reduce statements about entire vector spaces down to bases, which are quite “small” in the finite dimensional case.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 49 mins ago









                  rschwiebrschwieb

                  108k12103253




                  108k12103253



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179032%2fconcept-of-linear-mappings-are-confusing-me%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

                      Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

                      Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"