Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?There is a prime between $n$ and $n^2$, without BertrandHow to calculate prime numbers.The number of numbers not divisible by $2,3,5,7$ or $11$ between multiples of $2310$Is the product of two primes ALWAYS a semiprime?Why are all non-prime numbers divisible by a prime number?A prime number generator algorithm based on $x^2+(x-1)^2$ that generates only primesA number n is not a Prime no and lies between 1 to 301,how many such numbers are there which is not divisible by 2,3,5,7.List of positive integers NOT divisible by smallest q prime numbersCan you propose a conjectural $textUpper bound(x)$ for the counting function of a sequence of primes arising from the Eratosthenes sieve?Why is “jump” between two primes (almost) always prime or 1 up to 1000?What is the maximum difference between these two functions?

Lifted its hind leg on or lifted its hind leg towards?

Proof of Lemma: Every integer can be written as a product of primes

How will losing mobility of one hand affect my career as a programmer?

Can somebody explain Brexit in a few child-proof sentences?

Why isn't KTEX's runway designation 10/28 instead of 9/27?

Have I saved too much for retirement so far?

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

How do I repair my stair bannister?

Blender - show edges angles “direction”

Is there an Impartial Brexit Deal comparison site?

Can I rely on these GitHub repository files?

How to prevent YouTube from showing already watched videos?

node command while defining a coordinate in TikZ

Is there a word to describe the feeling of being transfixed out of horror?

How to deal with loss of decision making power over a change?

How do ultrasonic sensors differentiate between transmitted and received signals?

Simulating a probability of 1 of 2^N with less than N random bits

Organic chemistry Iodoform Reaction

What if somebody invests in my application?

Identify a stage play about a VR experience in which participants are encouraged to simulate performing horrific activities

What (else) happened July 1st 1858 in London?

Latex for-and in equation

What is the term when two people sing in harmony, but they aren't singing the same notes?

Installing PowerShell on 32-bit Kali OS fails



Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?


There is a prime between $n$ and $n^2$, without BertrandHow to calculate prime numbers.The number of numbers not divisible by $2,3,5,7$ or $11$ between multiples of $2310$Is the product of two primes ALWAYS a semiprime?Why are all non-prime numbers divisible by a prime number?A prime number generator algorithm based on $x^2+(x-1)^2$ that generates only primesA number n is not a Prime no and lies between 1 to 301,how many such numbers are there which is not divisible by 2,3,5,7.List of positive integers NOT divisible by smallest q prime numbersCan you propose a conjectural $textUpper bound(x)$ for the counting function of a sequence of primes arising from the Eratosthenes sieve?Why is “jump” between two primes (almost) always prime or 1 up to 1000?What is the maximum difference between these two functions?













2












$begingroup$


Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.










share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    1 hour ago










  • $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    1 hour ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    1 hour ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^th$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_n-1$ is $p_ntimes p_n+1$?
    $endgroup$
    – J. W. Tanner
    1 hour ago











  • $begingroup$
    ... i think so? i was just playing with prime numbers.. and noticed that after each square of the prime number, the next prime number was the next multiple that wasn't divisible by a smaller prime.. so 5x5 = 25, but the numbers not divisible by 2,3 above that are 29,31,35. 35 is 7x5 - i.e. the current prime times the next prime. i checked it held true for 7 and 11 but wondered if it was universal
    $endgroup$
    – David
    1 hour ago















2












$begingroup$


Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.










share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 4




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    1 hour ago










  • $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    1 hour ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    1 hour ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^th$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_n-1$ is $p_ntimes p_n+1$?
    $endgroup$
    – J. W. Tanner
    1 hour ago











  • $begingroup$
    ... i think so? i was just playing with prime numbers.. and noticed that after each square of the prime number, the next prime number was the next multiple that wasn't divisible by a smaller prime.. so 5x5 = 25, but the numbers not divisible by 2,3 above that are 29,31,35. 35 is 7x5 - i.e. the current prime times the next prime. i checked it held true for 7 and 11 but wondered if it was universal
    $endgroup$
    – David
    1 hour ago













2












2








2


1



$begingroup$


Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.










share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.







elementary-number-theory prime-numbers






share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 52 mins ago









Mr. Brooks

43411338




43411338






New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









DavidDavid

1165




1165




New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 4




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    1 hour ago










  • $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    1 hour ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    1 hour ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^th$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_n-1$ is $p_ntimes p_n+1$?
    $endgroup$
    – J. W. Tanner
    1 hour ago











  • $begingroup$
    ... i think so? i was just playing with prime numbers.. and noticed that after each square of the prime number, the next prime number was the next multiple that wasn't divisible by a smaller prime.. so 5x5 = 25, but the numbers not divisible by 2,3 above that are 29,31,35. 35 is 7x5 - i.e. the current prime times the next prime. i checked it held true for 7 and 11 but wondered if it was universal
    $endgroup$
    – David
    1 hour ago












  • 4




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    1 hour ago










  • $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    1 hour ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    1 hour ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^th$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_n-1$ is $p_ntimes p_n+1$?
    $endgroup$
    – J. W. Tanner
    1 hour ago











  • $begingroup$
    ... i think so? i was just playing with prime numbers.. and noticed that after each square of the prime number, the next prime number was the next multiple that wasn't divisible by a smaller prime.. so 5x5 = 25, but the numbers not divisible by 2,3 above that are 29,31,35. 35 is 7x5 - i.e. the current prime times the next prime. i checked it held true for 7 and 11 but wondered if it was universal
    $endgroup$
    – David
    1 hour ago







4




4




$begingroup$
Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
$endgroup$
– Eric Wofsey
1 hour ago




$begingroup$
Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
$endgroup$
– Eric Wofsey
1 hour ago












$begingroup$
See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
$endgroup$
– mfl
1 hour ago




$begingroup$
See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
$endgroup$
– mfl
1 hour ago












$begingroup$
sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
$endgroup$
– David
1 hour ago




$begingroup$
sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
$endgroup$
– David
1 hour ago












$begingroup$
Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^th$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_n-1$ is $p_ntimes p_n+1$?
$endgroup$
– J. W. Tanner
1 hour ago





$begingroup$
Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^th$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_n-1$ is $p_ntimes p_n+1$?
$endgroup$
– J. W. Tanner
1 hour ago













$begingroup$
... i think so? i was just playing with prime numbers.. and noticed that after each square of the prime number, the next prime number was the next multiple that wasn't divisible by a smaller prime.. so 5x5 = 25, but the numbers not divisible by 2,3 above that are 29,31,35. 35 is 7x5 - i.e. the current prime times the next prime. i checked it held true for 7 and 11 but wondered if it was universal
$endgroup$
– David
1 hour ago




$begingroup$
... i think so? i was just playing with prime numbers.. and noticed that after each square of the prime number, the next prime number was the next multiple that wasn't divisible by a smaller prime.. so 5x5 = 25, but the numbers not divisible by 2,3 above that are 29,31,35. 35 is 7x5 - i.e. the current prime times the next prime. i checked it held true for 7 and 11 but wondered if it was universal
$endgroup$
– David
1 hour ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_k-1$.



Claim: $n = p_kcdot p_k+1$.



Pf:



What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_k+1$. The smallest number with at least two prime factors all bigger than $p_k-1$ must be $p_kcdot p_k+1$ because $p_k, p_k+1$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



so $n= p_kp_k+1$ IF $n$ has at least two prime factors.



So if $nne p_kp_k+1$ then 1) $n le p_kp_k+1$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



If so, then $q ge p_k+1$ then $q^m ge p_k+1^mge p_k+1^2 > p_k*p_k+1$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_k+1$.



That would mean $p_k^2 < p_k+1$.



This is impossible by Bertrands postulate.



So indeed the next composite number not divisible by $p_1,..., p_k-1$ larger than $p_k^2$ is $p_kp_k+1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
    $endgroup$
    – David
    42 mins ago











  • $begingroup$
    Actually on reading eric's it seems we really more or less have the same answer.
    $endgroup$
    – fleablood
    25 mins ago










  • $begingroup$
    yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
    $endgroup$
    – David
    11 mins ago


















4












$begingroup$

Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






share|cite|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    David is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162271%2fis-the-next-prime-number-always-the-next-number-divisible-by-the-current-prime-n%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_k-1$.



    Claim: $n = p_kcdot p_k+1$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_k+1$. The smallest number with at least two prime factors all bigger than $p_k-1$ must be $p_kcdot p_k+1$ because $p_k, p_k+1$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_k+1$ IF $n$ has at least two prime factors.



    So if $nne p_kp_k+1$ then 1) $n le p_kp_k+1$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_k+1$ then $q^m ge p_k+1^mge p_k+1^2 > p_k*p_k+1$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_k+1$.



    That would mean $p_k^2 < p_k+1$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_k-1$ larger than $p_k^2$ is $p_kp_k+1$.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      42 mins ago











    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      25 mins ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      11 mins ago















    2












    $begingroup$

    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_k-1$.



    Claim: $n = p_kcdot p_k+1$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_k+1$. The smallest number with at least two prime factors all bigger than $p_k-1$ must be $p_kcdot p_k+1$ because $p_k, p_k+1$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_k+1$ IF $n$ has at least two prime factors.



    So if $nne p_kp_k+1$ then 1) $n le p_kp_k+1$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_k+1$ then $q^m ge p_k+1^mge p_k+1^2 > p_k*p_k+1$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_k+1$.



    That would mean $p_k^2 < p_k+1$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_k-1$ larger than $p_k^2$ is $p_kp_k+1$.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      42 mins ago











    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      25 mins ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      11 mins ago













    2












    2








    2





    $begingroup$

    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_k-1$.



    Claim: $n = p_kcdot p_k+1$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_k+1$. The smallest number with at least two prime factors all bigger than $p_k-1$ must be $p_kcdot p_k+1$ because $p_k, p_k+1$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_k+1$ IF $n$ has at least two prime factors.



    So if $nne p_kp_k+1$ then 1) $n le p_kp_k+1$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_k+1$ then $q^m ge p_k+1^mge p_k+1^2 > p_k*p_k+1$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_k+1$.



    That would mean $p_k^2 < p_k+1$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_k-1$ larger than $p_k^2$ is $p_kp_k+1$.






    share|cite|improve this answer









    $endgroup$



    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_k-1$.



    Claim: $n = p_kcdot p_k+1$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_k+1$. The smallest number with at least two prime factors all bigger than $p_k-1$ must be $p_kcdot p_k+1$ because $p_k, p_k+1$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_k+1$ IF $n$ has at least two prime factors.



    So if $nne p_kp_k+1$ then 1) $n le p_kp_k+1$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_k+1$ then $q^m ge p_k+1^mge p_k+1^2 > p_k*p_k+1$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_k+1$.



    That would mean $p_k^2 < p_k+1$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_k-1$ larger than $p_k^2$ is $p_kp_k+1$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 53 mins ago









    fleabloodfleablood

    73.4k22791




    73.4k22791











    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      42 mins ago











    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      25 mins ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      11 mins ago
















    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      42 mins ago











    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      25 mins ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      11 mins ago















    $begingroup$
    gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
    $endgroup$
    – David
    42 mins ago





    $begingroup$
    gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
    $endgroup$
    – David
    42 mins ago













    $begingroup$
    Actually on reading eric's it seems we really more or less have the same answer.
    $endgroup$
    – fleablood
    25 mins ago




    $begingroup$
    Actually on reading eric's it seems we really more or less have the same answer.
    $endgroup$
    – fleablood
    25 mins ago












    $begingroup$
    yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
    $endgroup$
    – David
    11 mins ago




    $begingroup$
    yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
    $endgroup$
    – David
    11 mins ago











    4












    $begingroup$

    Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



    This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



    The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






    share|cite|improve this answer











    $endgroup$

















      4












      $begingroup$

      Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



      This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



      The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






      share|cite|improve this answer











      $endgroup$















        4












        4








        4





        $begingroup$

        Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



        This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



        The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






        share|cite|improve this answer











        $endgroup$



        Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



        This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



        The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 1 hour ago

























        answered 1 hour ago









        Eric WofseyEric Wofsey

        190k14216348




        190k14216348




















            David is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            David is a new contributor. Be nice, and check out our Code of Conduct.












            David is a new contributor. Be nice, and check out our Code of Conduct.











            David is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162271%2fis-the-next-prime-number-always-the-next-number-divisible-by-the-current-prime-n%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

            152 Atala Notae | Nexus externi | Tabula navigationis"Discovery Circumstances: Numbered Minor Planets"2000152Small-Body Database

            Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"