Is infinity mathematically observable?Does Pi contain all possible number combinations?What did Gauss think about infinity?Cantor, longish lines and the Landau -o notationsAre there mathematical objects that have been proved to exist but cannot be described in words?Concept of infinity: Infinity - InfinityInfinity minus infinity?Seemingly Simple Finding Constraints on Values in Difference of Geometric MeansFinding the two planes that contain a given line and form the same angle with two other linesmathematization of infinityIs there any integer-infinity?Intuition for Integration and Starting Points

A known event to a history junkie

Could solar power be utilized and substitute coal in the 19th century?

How did Monica know how to operate Carol's "designer"?

A social experiment. What is the worst that can happen?

A Standard Integral Equation

Perfect riffle shuffles

The most efficient algorithm to find all possible integer pairs which sum to a given integer

Java - What do constructor type arguments mean when placed *before* the type?

Is there a problem with hiding "forgot password" until it's needed?

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

Why isn't KTEX's runway designation 10/28 instead of 9/27?

Did US corporations pay demonstrators in the German demonstrations against article 13?

Is there enough fresh water in the world to eradicate the drinking water crisis?

Should my PhD thesis be submitted under my legal name?

Can I rely on these GitHub repository files?

Is there an wasy way to program in Tikz something like the one in the image?

Can the electrostatic force be infinite in magnitude?

Is infinity mathematically observable?

I2C signal and power over long range (10meter cable)

Are taller landing gear bad for aircraft, particulary large airliners?

Simulating a probability of 1 of 2^N with less than N random bits

How do ultrasonic sensors differentiate between transmitted and received signals?

What would you call a finite collection of unordered objects that are not necessarily distinct?

What should I use for Mishna study?



Is infinity mathematically observable?


Does Pi contain all possible number combinations?What did Gauss think about infinity?Cantor, longish lines and the Landau -o notationsAre there mathematical objects that have been proved to exist but cannot be described in words?Concept of infinity: Infinity - InfinityInfinity minus infinity?Seemingly Simple Finding Constraints on Values in Difference of Geometric MeansFinding the two planes that contain a given line and form the same angle with two other linesmathematization of infinityIs there any integer-infinity?Intuition for Integration and Starting Points













3












$begingroup$


I have a little question. In fact, is too short.




Is infinity observable? (Can infinity be observed?)




I would like to explain it by example because the question seems unclear in this way.



A simple example:




$sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




By mathematical definition,



Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




Or other combinations can be equal,



$$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



Here, $sqrt 2$ is an only simple example. The question is not just
$sqrt 2$.




Generalization of the question is :



For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



Sorry about the grammar and translation errors in my English.



Thank you very much.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    I have a little question. In fact, is too short.




    Is infinity observable? (Can infinity be observed?)




    I would like to explain it by example because the question seems unclear in this way.



    A simple example:




    $sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



    Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




    By mathematical definition,



    Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




    Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




    Or other combinations can be equal,



    $$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



    Here, $sqrt 2$ is an only simple example. The question is not just
    $sqrt 2$.




    Generalization of the question is :



    For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




    I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



    Sorry about the grammar and translation errors in my English.



    Thank you very much.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I have a little question. In fact, is too short.




      Is infinity observable? (Can infinity be observed?)




      I would like to explain it by example because the question seems unclear in this way.



      A simple example:




      $sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



      Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




      By mathematical definition,



      Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




      Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




      Or other combinations can be equal,



      $$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



      Here, $sqrt 2$ is an only simple example. The question is not just
      $sqrt 2$.




      Generalization of the question is :



      For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




      I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



      Sorry about the grammar and translation errors in my English.



      Thank you very much.










      share|cite|improve this question











      $endgroup$




      I have a little question. In fact, is too short.




      Is infinity observable? (Can infinity be observed?)




      I would like to explain it by example because the question seems unclear in this way.



      A simple example:




      $sqrt 2=1,41421356237309504880168872420969\807856967187537694807317667973799073247\846210703885038753432764157273501384623\091229702492483605585073721264412149709\993583141322266592750559275579995050115\278206057147010955997160597027453459686\201472851741864088 cdots$



      Is it possible to prove that there is no combination of $left0,0,0right$, $left1,1,1right$ or $left2,2,2right$ in this writing?




      By mathematical definition,



      Let, $phi_sqrt 2(n)$ is n'th digit function of $sqrt 2.$




      Question: Is there an exist such a $ninmathbbZ^+$, then $phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=0, phi_sqrt 2(n+2)=0$ ?




      Or other combinations can be equal,



      $$phi_sqrt 2(n)=0, phi_sqrt 2(n+1)=1,phi_sqrt 2(n+2)=2, phi_sqrt 2(n+3)=3, phi_sqrt 2(n+4)=4, phi_sqrt 2(n+5)=5$$



      Here, $sqrt 2$ is an only simple example. The question is not just
      $sqrt 2$.




      Generalization of the question is :



      For function $phi _alpha (n)$, is it possible to find any integer sequence ? where $alpha$ is an any irrational number or constant ($e,picdots$ and etc).




      I "think" , the answer is undecidability. Because, we can not observe infinity. Of course, I dont know the correct answer.



      Sorry about the grammar and translation errors in my English.



      Thank you very much.







      algebra-precalculus soft-question math-history infinity irrational-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 52 mins ago







      Student

















      asked 1 hour ago









      StudentStudent

      6491418




      6491418




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago


















          4












          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            39 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            38 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            32 mins ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162396%2fis-infinity-mathematically-observable%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago















          5












          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago













          5












          5








          5





          $begingroup$

          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .






          share|cite|improve this answer











          $endgroup$



          Not sure why you multiplied it by $10$, but you can check $sqrt2$ written up to $1$ million digits for example here: https://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil . Full text search shows there are 899 occurences of $000$, 859 occurences of $111$ and 919 occurences of $222$. And that is "just" first one million of digits, that does not even come close to infinity...



          Actually, there is possibility that $sqrt2$ is something called a normal number. If it is, it would mean it contains every finite combination of digits you can imagine. Unfortunately, it is currently unknown where it has this property. So in your second case, $012345$ would be there as well (although it already appears once in the first million digits referred above).



          Also, there is one popular question here on MSE about whether $pi$ has this property, you might wan to check it out: Does Pi contain all possible number combinations? .







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 57 mins ago

























          answered 1 hour ago









          SilSil

          5,39521644




          5,39521644











          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago
















          • $begingroup$
            Well, for $e$ is it possible?
            $endgroup$
            – Student
            1 hour ago










          • $begingroup$
            $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
            $endgroup$
            – Eevee Trainer
            1 hour ago















          $begingroup$
          Well, for $e$ is it possible?
          $endgroup$
          – Student
          1 hour ago




          $begingroup$
          Well, for $e$ is it possible?
          $endgroup$
          – Student
          1 hour ago












          $begingroup$
          $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
          $endgroup$
          – Eevee Trainer
          1 hour ago




          $begingroup$
          $e$ is not known to be normal, but (as pointed out in my pseudoanswer) it's conjectured to be. Pretty much all of the normal numbers aside from a few specific constants we know of were specifically constructed for the purpose of showing normal numbers exist.
          $endgroup$
          – Eevee Trainer
          1 hour ago











          4












          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            39 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            38 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            32 mins ago















          4












          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            39 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            38 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            32 mins ago













          4












          4








          4





          $begingroup$

          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)






          share|cite|improve this answer









          $endgroup$



          Less an answer than an extended comment:




          This actually ties in quite nicely with the concept of a "normal" number. A number which is "normal" is one whose decimal expansion has any sequence of digits occurring equally as often as any other sequence, regardless of the base the number is in.



          Of course, it is necessary for the number to be irrational for this to be achieved. "Almost every" real number is a normal number, in the sense that they have Lesbague measure $1$. Despite this, very few numbers are known to be normal, and most of those that are were artificially constructed for the purpose of showing them to be normal. For example, one such number is the concatenation of all the naturals in base $10$, which is known as Champernowne's constant:



          $$0.12345678910111213141516171819202122232425...$$



          It is suspected that many famous irrational constants - such as $e$, $pi$, and $sqrt 2$ - are indeed normal numbers. Thus, not only would these digit sequences you propose be in the expansion of $sqrt 2$, but every digit sequence would occur in every base - and equally often at that.



          Of course, the proof for even $sqrt 2$ seems to elude us at this time. But I imagine that this is not conjectured without basis. As noted in Sil's answer, the three sequences you propose occur several times in just the first million digits. (I anecdotally played around and noticed the first few digits of $pi$ - $31415$ - occurred only once and no later sequences. But again, that's a finite truncation at like one million digits.)







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          Eevee TrainerEevee Trainer

          8,47721439




          8,47721439











          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            39 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            38 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            32 mins ago
















          • $begingroup$
            Is it known a non-normal number?
            $endgroup$
            – Student
            39 mins ago






          • 1




            $begingroup$
            Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
            $endgroup$
            – Eevee Trainer
            38 mins ago










          • $begingroup$
            Thank you :) (+)
            $endgroup$
            – Student
            32 mins ago















          $begingroup$
          Is it known a non-normal number?
          $endgroup$
          – Student
          39 mins ago




          $begingroup$
          Is it known a non-normal number?
          $endgroup$
          – Student
          39 mins ago




          1




          1




          $begingroup$
          Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
          $endgroup$
          – Eevee Trainer
          38 mins ago




          $begingroup$
          Nope. After all, if it were known to be not normal, it wouldn't be conjectured to be normal. :p
          $endgroup$
          – Eevee Trainer
          38 mins ago












          $begingroup$
          Thank you :) (+)
          $endgroup$
          – Student
          32 mins ago




          $begingroup$
          Thank you :) (+)
          $endgroup$
          – Student
          32 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162396%2fis-infinity-mathematically-observable%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

          Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"

          inputenc: Unicode character … not set up for use with LaTeX The Next CEO of Stack OverflowEntering Unicode characters in LaTeXHow to solve the `Package inputenc Error: Unicode char not set up for use with LaTeX` problem?solve “Unicode char is not set up for use with LaTeX” without special handling of every new interesting UTF-8 characterPackage inputenc Error: Unicode character ² (U+B2)(inputenc) not set up for use with LaTeX. acroI2C[I²C]package inputenc error unicode char (u + 190) not set up for use with latexPackage inputenc Error: Unicode char u8:′ not set up for use with LaTeX. 3′inputenc Error: Unicode char u8: not set up for use with LaTeX with G-BriefPackage Inputenc Error: Unicode char u8: not set up for use with LaTeXPackage inputenc Error: Unicode char ́ (U+301)(inputenc) not set up for use with LaTeX. includePackage inputenc Error: Unicode char ̂ (U+302)(inputenc) not set up for use with LaTeX. … $widehatleft (OA,AA' right )$Package inputenc Error: Unicode char â„¡ (U+2121)(inputenc) not set up for use with LaTeX. printbibliography[heading=bibintoc]Package inputenc Error: Unicode char − (U+2212)(inputenc) not set up for use with LaTeXPackage inputenc Error: Unicode character α (U+3B1) not set up for use with LaTeXPackage inputenc Error: Unicode characterError: ! Package inputenc Error: Unicode char ⊘ (U+2298)(inputenc) not set up for use with LaTeX