Find a path from s to t using as few red nodes as possible The Next CEO of Stack OverflowDijkstra algorithm vs breadth first search for shortest path in graphAlgorithm to find diameter of a tree using BFS/DFS. Why does it work?Finding shortest path from a node to any node of a particular typeParallel algorithm to find if a set of nodes is on an elememtry cycle in a directed/undirected graphShortest path in unweighted graph using an iterator onlyShortest Path using DFS on weighted graphsCan a 3 Color DFS be used to identify cycles (not just detect them)?Find a path that contains specific nodes without back and forward edgesChecking if there is a single path that visits all nodes in a directed graphFind shortest path that goes through at least 5 red edges
Creating a script with console commands
Words hidden in my phone number
Can Sri Krishna be called 'a person'?
Shortening a title without changing its meaning
How dangerous is XSS
Does the Idaho Potato Commission associate potato skins with healthy eating?
How to show a landlord what we have in savings?
Could a dragon use its wings to swim?
Why was Sir Cadogan fired?
Does Germany produce more waste than the US?
How to pronounce fünf in 45
Incomplete cube
How can a day be of 24 hours?
pgfplots: How to draw a tangent graph below two others?
Variance of Monte Carlo integration with importance sampling
Compensation for working overtime on Saturdays
What steps are necessary to read a Modern SSD in Medieval Europe?
Is it reasonable to ask other researchers to send me their previous grant applications?
Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact
Find the majority element, which appears more than half the time
How do I secure a TV wall mount?
What did the word "leisure" mean in late 18th Century usage?
Horror film about a man brought out of cryogenic suspension without a soul, around 1990
Can a PhD from a non-TU9 German university become a professor in a TU9 university?
Find a path from s to t using as few red nodes as possible
The Next CEO of Stack OverflowDijkstra algorithm vs breadth first search for shortest path in graphAlgorithm to find diameter of a tree using BFS/DFS. Why does it work?Finding shortest path from a node to any node of a particular typeParallel algorithm to find if a set of nodes is on an elememtry cycle in a directed/undirected graphShortest path in unweighted graph using an iterator onlyShortest Path using DFS on weighted graphsCan a 3 Color DFS be used to identify cycles (not just detect them)?Find a path that contains specific nodes without back and forward edgesChecking if there is a single path that visits all nodes in a directed graphFind shortest path that goes through at least 5 red edges
$begingroup$
Was doing a little interview prep. Given an undirected graph G, such that each node is colored red or blue and |E|≥|V|, find a path in O(|E|) time such that starting and ending at 2 blue nodes, s and t, that you pass through as few red nodes as possible.
Initial Impressions: Since |E|≥|V|, O(|E|) time would include O(|E|+|V|), which means the solution likely uses BFS or DFS. Modifying the graph such that causing the all red nodes must be forced down a directed path of some long length (after making the whole graph directed) in order to use out-of-the-box BFS seems not viable, as it would mean constructing a new graph would be along O(|E||V|) time.
Another method I toyed around with was propagating values to nodes based on the safest path to that node while doing a DFS search, but not all values were guaranteed to update.
I still want to try to solve this myself, but I'm really stuck right now. Was wondering if there were any hints I could get. There are much simpler ways of doing this if it weren't for the O(|E|) time. Djikstras with creating some edge weights would work, but wouldn't be within the time bound.
graphs
$endgroup$
add a comment |
$begingroup$
Was doing a little interview prep. Given an undirected graph G, such that each node is colored red or blue and |E|≥|V|, find a path in O(|E|) time such that starting and ending at 2 blue nodes, s and t, that you pass through as few red nodes as possible.
Initial Impressions: Since |E|≥|V|, O(|E|) time would include O(|E|+|V|), which means the solution likely uses BFS or DFS. Modifying the graph such that causing the all red nodes must be forced down a directed path of some long length (after making the whole graph directed) in order to use out-of-the-box BFS seems not viable, as it would mean constructing a new graph would be along O(|E||V|) time.
Another method I toyed around with was propagating values to nodes based on the safest path to that node while doing a DFS search, but not all values were guaranteed to update.
I still want to try to solve this myself, but I'm really stuck right now. Was wondering if there were any hints I could get. There are much simpler ways of doing this if it weren't for the O(|E|) time. Djikstras with creating some edge weights would work, but wouldn't be within the time bound.
graphs
$endgroup$
1
$begingroup$
Try a variant of BFS in which you first find all red nodes reachable only via blue nodes, and so on.
$endgroup$
– Yuval Filmus
2 hours ago
add a comment |
$begingroup$
Was doing a little interview prep. Given an undirected graph G, such that each node is colored red or blue and |E|≥|V|, find a path in O(|E|) time such that starting and ending at 2 blue nodes, s and t, that you pass through as few red nodes as possible.
Initial Impressions: Since |E|≥|V|, O(|E|) time would include O(|E|+|V|), which means the solution likely uses BFS or DFS. Modifying the graph such that causing the all red nodes must be forced down a directed path of some long length (after making the whole graph directed) in order to use out-of-the-box BFS seems not viable, as it would mean constructing a new graph would be along O(|E||V|) time.
Another method I toyed around with was propagating values to nodes based on the safest path to that node while doing a DFS search, but not all values were guaranteed to update.
I still want to try to solve this myself, but I'm really stuck right now. Was wondering if there were any hints I could get. There are much simpler ways of doing this if it weren't for the O(|E|) time. Djikstras with creating some edge weights would work, but wouldn't be within the time bound.
graphs
$endgroup$
Was doing a little interview prep. Given an undirected graph G, such that each node is colored red or blue and |E|≥|V|, find a path in O(|E|) time such that starting and ending at 2 blue nodes, s and t, that you pass through as few red nodes as possible.
Initial Impressions: Since |E|≥|V|, O(|E|) time would include O(|E|+|V|), which means the solution likely uses BFS or DFS. Modifying the graph such that causing the all red nodes must be forced down a directed path of some long length (after making the whole graph directed) in order to use out-of-the-box BFS seems not viable, as it would mean constructing a new graph would be along O(|E||V|) time.
Another method I toyed around with was propagating values to nodes based on the safest path to that node while doing a DFS search, but not all values were guaranteed to update.
I still want to try to solve this myself, but I'm really stuck right now. Was wondering if there were any hints I could get. There are much simpler ways of doing this if it weren't for the O(|E|) time. Djikstras with creating some edge weights would work, but wouldn't be within the time bound.
graphs
graphs
asked 5 hours ago
Hunter DyerHunter Dyer
284
284
1
$begingroup$
Try a variant of BFS in which you first find all red nodes reachable only via blue nodes, and so on.
$endgroup$
– Yuval Filmus
2 hours ago
add a comment |
1
$begingroup$
Try a variant of BFS in which you first find all red nodes reachable only via blue nodes, and so on.
$endgroup$
– Yuval Filmus
2 hours ago
1
1
$begingroup$
Try a variant of BFS in which you first find all red nodes reachable only via blue nodes, and so on.
$endgroup$
– Yuval Filmus
2 hours ago
$begingroup$
Try a variant of BFS in which you first find all red nodes reachable only via blue nodes, and so on.
$endgroup$
– Yuval Filmus
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
To solve this, you need to use $BFS$. But first, manipulate $G$ so that the path will always favor blue vertices.
The solution has 2 parts:
- Use $DFS$ on blue vertices only, to find all all-blue strongly connected components, or $SCC$. Let's denote each $SCC$ by $v'$. Now, each blue $v in v'$ will be "compressed" to a single vertex $u$, and an edge $(u,x)$ will be added for every $x in N(v')$.
Note any such $x$ is necessarily red.
This step costs $O(V+E) = O(E)$, since $DFS$ is $O(V+E)$, and you have at most $V$ blue vertices, which make no more than $E$ new edges to add.
Step 1 means all paths that are blue-only will be free. On the new graph, the $BFS$ will only consider the edges which pass through a red vertice.
- Use $BFS$ from $s$. That length of the path to $t$ will essentially be the shortest path under the constraint of least red vertices in the path.
$endgroup$
add a comment |
$begingroup$
Convert $G$ to a directed graph $G'$ where we have two edges $(u,v)$ and $(v,u)$ in $G'$ for every edge $u,v$ in $G$. Let the length of $(u,v)$ be 1 if $v$ is a red node and 0 otherwise. Now run Dijkstra's algorithm on $G'$ from the starting node $s$ to the ending node $t$.
It is clear that the shortest path thus found passes as few red nodes as possible.
$endgroup$
$begingroup$
Yeah that definitely works, but the runtime of Dijkstra's is O(|E| + |V|log|V|) which is more than O(|E|).
$endgroup$
– Hunter Dyer
23 mins ago
$begingroup$
I will show shortly that this particular run of Dijkstra's algorithm actually takes $O(|E|)$ time.
$endgroup$
– Apass.Jack
8 mins ago
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106337%2ffind-a-path-from-s-to-t-using-as-few-red-nodes-as-possible%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To solve this, you need to use $BFS$. But first, manipulate $G$ so that the path will always favor blue vertices.
The solution has 2 parts:
- Use $DFS$ on blue vertices only, to find all all-blue strongly connected components, or $SCC$. Let's denote each $SCC$ by $v'$. Now, each blue $v in v'$ will be "compressed" to a single vertex $u$, and an edge $(u,x)$ will be added for every $x in N(v')$.
Note any such $x$ is necessarily red.
This step costs $O(V+E) = O(E)$, since $DFS$ is $O(V+E)$, and you have at most $V$ blue vertices, which make no more than $E$ new edges to add.
Step 1 means all paths that are blue-only will be free. On the new graph, the $BFS$ will only consider the edges which pass through a red vertice.
- Use $BFS$ from $s$. That length of the path to $t$ will essentially be the shortest path under the constraint of least red vertices in the path.
$endgroup$
add a comment |
$begingroup$
To solve this, you need to use $BFS$. But first, manipulate $G$ so that the path will always favor blue vertices.
The solution has 2 parts:
- Use $DFS$ on blue vertices only, to find all all-blue strongly connected components, or $SCC$. Let's denote each $SCC$ by $v'$. Now, each blue $v in v'$ will be "compressed" to a single vertex $u$, and an edge $(u,x)$ will be added for every $x in N(v')$.
Note any such $x$ is necessarily red.
This step costs $O(V+E) = O(E)$, since $DFS$ is $O(V+E)$, and you have at most $V$ blue vertices, which make no more than $E$ new edges to add.
Step 1 means all paths that are blue-only will be free. On the new graph, the $BFS$ will only consider the edges which pass through a red vertice.
- Use $BFS$ from $s$. That length of the path to $t$ will essentially be the shortest path under the constraint of least red vertices in the path.
$endgroup$
add a comment |
$begingroup$
To solve this, you need to use $BFS$. But first, manipulate $G$ so that the path will always favor blue vertices.
The solution has 2 parts:
- Use $DFS$ on blue vertices only, to find all all-blue strongly connected components, or $SCC$. Let's denote each $SCC$ by $v'$. Now, each blue $v in v'$ will be "compressed" to a single vertex $u$, and an edge $(u,x)$ will be added for every $x in N(v')$.
Note any such $x$ is necessarily red.
This step costs $O(V+E) = O(E)$, since $DFS$ is $O(V+E)$, and you have at most $V$ blue vertices, which make no more than $E$ new edges to add.
Step 1 means all paths that are blue-only will be free. On the new graph, the $BFS$ will only consider the edges which pass through a red vertice.
- Use $BFS$ from $s$. That length of the path to $t$ will essentially be the shortest path under the constraint of least red vertices in the path.
$endgroup$
To solve this, you need to use $BFS$. But first, manipulate $G$ so that the path will always favor blue vertices.
The solution has 2 parts:
- Use $DFS$ on blue vertices only, to find all all-blue strongly connected components, or $SCC$. Let's denote each $SCC$ by $v'$. Now, each blue $v in v'$ will be "compressed" to a single vertex $u$, and an edge $(u,x)$ will be added for every $x in N(v')$.
Note any such $x$ is necessarily red.
This step costs $O(V+E) = O(E)$, since $DFS$ is $O(V+E)$, and you have at most $V$ blue vertices, which make no more than $E$ new edges to add.
Step 1 means all paths that are blue-only will be free. On the new graph, the $BFS$ will only consider the edges which pass through a red vertice.
- Use $BFS$ from $s$. That length of the path to $t$ will essentially be the shortest path under the constraint of least red vertices in the path.
answered 1 hour ago
loxlox
1666
1666
add a comment |
add a comment |
$begingroup$
Convert $G$ to a directed graph $G'$ where we have two edges $(u,v)$ and $(v,u)$ in $G'$ for every edge $u,v$ in $G$. Let the length of $(u,v)$ be 1 if $v$ is a red node and 0 otherwise. Now run Dijkstra's algorithm on $G'$ from the starting node $s$ to the ending node $t$.
It is clear that the shortest path thus found passes as few red nodes as possible.
$endgroup$
$begingroup$
Yeah that definitely works, but the runtime of Dijkstra's is O(|E| + |V|log|V|) which is more than O(|E|).
$endgroup$
– Hunter Dyer
23 mins ago
$begingroup$
I will show shortly that this particular run of Dijkstra's algorithm actually takes $O(|E|)$ time.
$endgroup$
– Apass.Jack
8 mins ago
add a comment |
$begingroup$
Convert $G$ to a directed graph $G'$ where we have two edges $(u,v)$ and $(v,u)$ in $G'$ for every edge $u,v$ in $G$. Let the length of $(u,v)$ be 1 if $v$ is a red node and 0 otherwise. Now run Dijkstra's algorithm on $G'$ from the starting node $s$ to the ending node $t$.
It is clear that the shortest path thus found passes as few red nodes as possible.
$endgroup$
$begingroup$
Yeah that definitely works, but the runtime of Dijkstra's is O(|E| + |V|log|V|) which is more than O(|E|).
$endgroup$
– Hunter Dyer
23 mins ago
$begingroup$
I will show shortly that this particular run of Dijkstra's algorithm actually takes $O(|E|)$ time.
$endgroup$
– Apass.Jack
8 mins ago
add a comment |
$begingroup$
Convert $G$ to a directed graph $G'$ where we have two edges $(u,v)$ and $(v,u)$ in $G'$ for every edge $u,v$ in $G$. Let the length of $(u,v)$ be 1 if $v$ is a red node and 0 otherwise. Now run Dijkstra's algorithm on $G'$ from the starting node $s$ to the ending node $t$.
It is clear that the shortest path thus found passes as few red nodes as possible.
$endgroup$
Convert $G$ to a directed graph $G'$ where we have two edges $(u,v)$ and $(v,u)$ in $G'$ for every edge $u,v$ in $G$. Let the length of $(u,v)$ be 1 if $v$ is a red node and 0 otherwise. Now run Dijkstra's algorithm on $G'$ from the starting node $s$ to the ending node $t$.
It is clear that the shortest path thus found passes as few red nodes as possible.
answered 36 mins ago
Apass.JackApass.Jack
13.7k1940
13.7k1940
$begingroup$
Yeah that definitely works, but the runtime of Dijkstra's is O(|E| + |V|log|V|) which is more than O(|E|).
$endgroup$
– Hunter Dyer
23 mins ago
$begingroup$
I will show shortly that this particular run of Dijkstra's algorithm actually takes $O(|E|)$ time.
$endgroup$
– Apass.Jack
8 mins ago
add a comment |
$begingroup$
Yeah that definitely works, but the runtime of Dijkstra's is O(|E| + |V|log|V|) which is more than O(|E|).
$endgroup$
– Hunter Dyer
23 mins ago
$begingroup$
I will show shortly that this particular run of Dijkstra's algorithm actually takes $O(|E|)$ time.
$endgroup$
– Apass.Jack
8 mins ago
$begingroup$
Yeah that definitely works, but the runtime of Dijkstra's is O(|E| + |V|log|V|) which is more than O(|E|).
$endgroup$
– Hunter Dyer
23 mins ago
$begingroup$
Yeah that definitely works, but the runtime of Dijkstra's is O(|E| + |V|log|V|) which is more than O(|E|).
$endgroup$
– Hunter Dyer
23 mins ago
$begingroup$
I will show shortly that this particular run of Dijkstra's algorithm actually takes $O(|E|)$ time.
$endgroup$
– Apass.Jack
8 mins ago
$begingroup$
I will show shortly that this particular run of Dijkstra's algorithm actually takes $O(|E|)$ time.
$endgroup$
– Apass.Jack
8 mins ago
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106337%2ffind-a-path-from-s-to-t-using-as-few-red-nodes-as-possible%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e)
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom))
StackExchange.using('gps', function() StackExchange.gps.track('embedded_signup_form.view', location: 'question_page' ); );
$window.unbind('scroll', onScroll);
;
$window.on('scroll', onScroll);
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Try a variant of BFS in which you first find all red nodes reachable only via blue nodes, and so on.
$endgroup$
– Yuval Filmus
2 hours ago