Walter Rudin's mathematical analysis: theorem 2.43. Why proof can't work under the perfect set is uncountable.Theorem 2.43 in Baby Rudin: How to understand the proof?Theorem 2.13 in Walter Rudin's Principles of Mathematical AnalysisWalter Rudin's Principle's of Mathematical AnalysisTheorem 2.43 in Baby Rudin: How to understand the proof?Trouble with Froda's Theorem Proof QuestionProof of Rudin's Theorem 2.43Understanding proof in Walter Rudin's Mathematical AnalysisProve that two sets A and B with $A cap B=emptyset$, $sup A = sup B$, $sup A notin A$ and $sup B notin B$ cannot exist.Let A be the set of all sequences of 0’s and 1’s (binary sequences). Prove that A is uncountable using Cantor's Diagonal Argument.Theorem 2.14 in Walter Rudin's Principles of Mathematical AnalysisWhy does this proof that the set of all finite subsets of N is a countable set not work for the set of all subsets of N?

Showing mass murder in a kid's book

A seasonal riddle

What do the positive and negative (+/-) transmit and receive pins mean on Ethernet cables?

Connection Between Knot Theory and Number Theory

Highest stage count that are used one right after the other?

What is it called when someone votes for an option that's not their first choice?

Why does a 97 / 92 key piano exist by Bosendorfer?

Why is indicated airspeed rather than ground speed used during the takeoff roll?

How to test the sharpness of a knife?

Do native speakers use "ultima" and "proxima" frequently in spoken English?

"Oh no!" in Latin

Error in master's thesis, I do not know what to do

What is the purpose of using a decision tree?

Weird lines in Microsoft Word

How to get directions in deep space?

Have any astronauts/cosmonauts died in space?

Center page as a whole without centering each element individually

Is there any common country to visit for persons holding UK and Schengen visas?

Derivative of an interpolated function

Unfrosted light bulb

categorizing a variable turns it from insignificant to significant

Hashing password to increase entropy

Why would five hundred and five same as one?

Relations between homogeneous polynomials



Walter Rudin's mathematical analysis: theorem 2.43. Why proof can't work under the perfect set is uncountable.


Theorem 2.43 in Baby Rudin: How to understand the proof?Theorem 2.13 in Walter Rudin's Principles of Mathematical AnalysisWalter Rudin's Principle's of Mathematical AnalysisTheorem 2.43 in Baby Rudin: How to understand the proof?Trouble with Froda's Theorem Proof QuestionProof of Rudin's Theorem 2.43Understanding proof in Walter Rudin's Mathematical AnalysisProve that two sets A and B with $A cap B=emptyset$, $sup A = sup B$, $sup A notin A$ and $sup B notin B$ cannot exist.Let A be the set of all sequences of 0’s and 1’s (binary sequences). Prove that A is uncountable using Cantor's Diagonal Argument.Theorem 2.14 in Walter Rudin's Principles of Mathematical AnalysisWhy does this proof that the set of all finite subsets of N is a countable set not work for the set of all subsets of N?













1












$begingroup$


I found several discussions about this theorem, like this one. I understand the proof adopts contradiction by assuming the perfect set $P$ is countable.



My question is if the assumption is $P$ is uncountable, the proof seems remains the same, i.e., the $P$ can't be uncountable either. In other words, I think whatever the assumption is, we can draw the contradiction in any way.



I don't understand in which way the uncountable condition could solve the contradiction in the proof.










share|cite|improve this question











$endgroup$











  • $begingroup$
    With the metric on $P$ inherited from the usual metric on $Bbb R^n$, the space $P$ is a complete metric space with no isolated points. We can show that a non-empty complete metric space $X$ with no isolated points has a subspace $Y$ which is homeomorphic to the Cantor Set. For the purposes of this Q it suffices to show there is a $Ysubset X$ which is a bijective image of the set of all binary sequences.
    $endgroup$
    – DanielWainfleet
    1 hour ago
















1












$begingroup$


I found several discussions about this theorem, like this one. I understand the proof adopts contradiction by assuming the perfect set $P$ is countable.



My question is if the assumption is $P$ is uncountable, the proof seems remains the same, i.e., the $P$ can't be uncountable either. In other words, I think whatever the assumption is, we can draw the contradiction in any way.



I don't understand in which way the uncountable condition could solve the contradiction in the proof.










share|cite|improve this question











$endgroup$











  • $begingroup$
    With the metric on $P$ inherited from the usual metric on $Bbb R^n$, the space $P$ is a complete metric space with no isolated points. We can show that a non-empty complete metric space $X$ with no isolated points has a subspace $Y$ which is homeomorphic to the Cantor Set. For the purposes of this Q it suffices to show there is a $Ysubset X$ which is a bijective image of the set of all binary sequences.
    $endgroup$
    – DanielWainfleet
    1 hour ago














1












1








1





$begingroup$


I found several discussions about this theorem, like this one. I understand the proof adopts contradiction by assuming the perfect set $P$ is countable.



My question is if the assumption is $P$ is uncountable, the proof seems remains the same, i.e., the $P$ can't be uncountable either. In other words, I think whatever the assumption is, we can draw the contradiction in any way.



I don't understand in which way the uncountable condition could solve the contradiction in the proof.










share|cite|improve this question











$endgroup$




I found several discussions about this theorem, like this one. I understand the proof adopts contradiction by assuming the perfect set $P$ is countable.



My question is if the assumption is $P$ is uncountable, the proof seems remains the same, i.e., the $P$ can't be uncountable either. In other words, I think whatever the assumption is, we can draw the contradiction in any way.



I don't understand in which way the uncountable condition could solve the contradiction in the proof.







real-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago







Tengerye

















asked 4 hours ago









TengeryeTengerye

1547




1547











  • $begingroup$
    With the metric on $P$ inherited from the usual metric on $Bbb R^n$, the space $P$ is a complete metric space with no isolated points. We can show that a non-empty complete metric space $X$ with no isolated points has a subspace $Y$ which is homeomorphic to the Cantor Set. For the purposes of this Q it suffices to show there is a $Ysubset X$ which is a bijective image of the set of all binary sequences.
    $endgroup$
    – DanielWainfleet
    1 hour ago

















  • $begingroup$
    With the metric on $P$ inherited from the usual metric on $Bbb R^n$, the space $P$ is a complete metric space with no isolated points. We can show that a non-empty complete metric space $X$ with no isolated points has a subspace $Y$ which is homeomorphic to the Cantor Set. For the purposes of this Q it suffices to show there is a $Ysubset X$ which is a bijective image of the set of all binary sequences.
    $endgroup$
    – DanielWainfleet
    1 hour ago
















$begingroup$
With the metric on $P$ inherited from the usual metric on $Bbb R^n$, the space $P$ is a complete metric space with no isolated points. We can show that a non-empty complete metric space $X$ with no isolated points has a subspace $Y$ which is homeomorphic to the Cantor Set. For the purposes of this Q it suffices to show there is a $Ysubset X$ which is a bijective image of the set of all binary sequences.
$endgroup$
– DanielWainfleet
1 hour ago





$begingroup$
With the metric on $P$ inherited from the usual metric on $Bbb R^n$, the space $P$ is a complete metric space with no isolated points. We can show that a non-empty complete metric space $X$ with no isolated points has a subspace $Y$ which is homeomorphic to the Cantor Set. For the purposes of this Q it suffices to show there is a $Ysubset X$ which is a bijective image of the set of all binary sequences.
$endgroup$
– DanielWainfleet
1 hour ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

First, there's a typo in your question: the proof proceeds by assuming for contradiction that $P$ is countable (not uncountable, as you've written).



More substantively, countability is used right away: we write $P$ as $x_n: ninmathbbN$ and recursively define a sequence of sets $V_n$ ($ninmathbbN$).



If $P$ were uncountable, we couldn't index the elements of $P$ by natural numbers. We'd have to index them by something else - say, some uncountable ordinal. So now $P$ has the form $y_eta:eta<lambda$ for some $lambda>omega$.



We can now proceed to build our $V$-sets as before, but at the "first infinite step" we run into trouble: we need $V_etacap P$ to be nonempty for each $eta$, but how do we keep that up forever? In fact, our $V$-sets might disappear entirely: while at each finite stage we've stayed nonempty, but we could easily "become empty in the limit" (consider the sequence of sets $(0,1)supset(0,1over 2)supset (0,1over 3)supset ...$). The recursive construction of the $V_n$s - which is the heart of the whole proof - relies on always having a "most recent" $V$-set at each stage, that is, only considering at most $mathbbN$-many $V$-sets in total. That this is sufficient follows from the countability of $P$. As soon as we drop this, our contradiction vanishes.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you so much. I have revised my question.
    $endgroup$
    – Tengerye
    3 hours ago


















0












$begingroup$

The Baire Category Theorem: If $P$ is a complete metric space and $F$ is a non-empty countable family of dense open subsets of $P$ then $cap F$ is dense in $P.$



Suppose $P$ is a non-empty closed subset of $Bbb R^n.$ Let $P$ inherit the usual metric from $Bbb R^n.$ Then $P$ is a complete metric space. Now suppose $P$ is countable and is a perfect subset of $Bbb R^n.$ Then $F=P setminus x: xin P$ is a non-empty countable family of dense open subsets of the space $P,$ so $cap F=emptyset$ is dense in $P,$ which is absurd.



(If $P$ were not assumed to be perfect then not all members of $F$ could be assumed to be dense in $P.$)



Aside: The proof of the Baire Category Theorem is direct and simple. Some students seem to be uncomfortable about this theorem, perhaps because it is unlike anything they've ever seen.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This A is unrelated to my comment to the Q regarding a subset of $P$ that's homeomorphic to the Cantor Set
    $endgroup$
    – DanielWainfleet
    1 hour ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154887%2fwalter-rudins-mathematical-analysis-theorem-2-43-why-proof-cant-work-under-t%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

First, there's a typo in your question: the proof proceeds by assuming for contradiction that $P$ is countable (not uncountable, as you've written).



More substantively, countability is used right away: we write $P$ as $x_n: ninmathbbN$ and recursively define a sequence of sets $V_n$ ($ninmathbbN$).



If $P$ were uncountable, we couldn't index the elements of $P$ by natural numbers. We'd have to index them by something else - say, some uncountable ordinal. So now $P$ has the form $y_eta:eta<lambda$ for some $lambda>omega$.



We can now proceed to build our $V$-sets as before, but at the "first infinite step" we run into trouble: we need $V_etacap P$ to be nonempty for each $eta$, but how do we keep that up forever? In fact, our $V$-sets might disappear entirely: while at each finite stage we've stayed nonempty, but we could easily "become empty in the limit" (consider the sequence of sets $(0,1)supset(0,1over 2)supset (0,1over 3)supset ...$). The recursive construction of the $V_n$s - which is the heart of the whole proof - relies on always having a "most recent" $V$-set at each stage, that is, only considering at most $mathbbN$-many $V$-sets in total. That this is sufficient follows from the countability of $P$. As soon as we drop this, our contradiction vanishes.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you so much. I have revised my question.
    $endgroup$
    – Tengerye
    3 hours ago















4












$begingroup$

First, there's a typo in your question: the proof proceeds by assuming for contradiction that $P$ is countable (not uncountable, as you've written).



More substantively, countability is used right away: we write $P$ as $x_n: ninmathbbN$ and recursively define a sequence of sets $V_n$ ($ninmathbbN$).



If $P$ were uncountable, we couldn't index the elements of $P$ by natural numbers. We'd have to index them by something else - say, some uncountable ordinal. So now $P$ has the form $y_eta:eta<lambda$ for some $lambda>omega$.



We can now proceed to build our $V$-sets as before, but at the "first infinite step" we run into trouble: we need $V_etacap P$ to be nonempty for each $eta$, but how do we keep that up forever? In fact, our $V$-sets might disappear entirely: while at each finite stage we've stayed nonempty, but we could easily "become empty in the limit" (consider the sequence of sets $(0,1)supset(0,1over 2)supset (0,1over 3)supset ...$). The recursive construction of the $V_n$s - which is the heart of the whole proof - relies on always having a "most recent" $V$-set at each stage, that is, only considering at most $mathbbN$-many $V$-sets in total. That this is sufficient follows from the countability of $P$. As soon as we drop this, our contradiction vanishes.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you so much. I have revised my question.
    $endgroup$
    – Tengerye
    3 hours ago













4












4








4





$begingroup$

First, there's a typo in your question: the proof proceeds by assuming for contradiction that $P$ is countable (not uncountable, as you've written).



More substantively, countability is used right away: we write $P$ as $x_n: ninmathbbN$ and recursively define a sequence of sets $V_n$ ($ninmathbbN$).



If $P$ were uncountable, we couldn't index the elements of $P$ by natural numbers. We'd have to index them by something else - say, some uncountable ordinal. So now $P$ has the form $y_eta:eta<lambda$ for some $lambda>omega$.



We can now proceed to build our $V$-sets as before, but at the "first infinite step" we run into trouble: we need $V_etacap P$ to be nonempty for each $eta$, but how do we keep that up forever? In fact, our $V$-sets might disappear entirely: while at each finite stage we've stayed nonempty, but we could easily "become empty in the limit" (consider the sequence of sets $(0,1)supset(0,1over 2)supset (0,1over 3)supset ...$). The recursive construction of the $V_n$s - which is the heart of the whole proof - relies on always having a "most recent" $V$-set at each stage, that is, only considering at most $mathbbN$-many $V$-sets in total. That this is sufficient follows from the countability of $P$. As soon as we drop this, our contradiction vanishes.






share|cite|improve this answer









$endgroup$



First, there's a typo in your question: the proof proceeds by assuming for contradiction that $P$ is countable (not uncountable, as you've written).



More substantively, countability is used right away: we write $P$ as $x_n: ninmathbbN$ and recursively define a sequence of sets $V_n$ ($ninmathbbN$).



If $P$ were uncountable, we couldn't index the elements of $P$ by natural numbers. We'd have to index them by something else - say, some uncountable ordinal. So now $P$ has the form $y_eta:eta<lambda$ for some $lambda>omega$.



We can now proceed to build our $V$-sets as before, but at the "first infinite step" we run into trouble: we need $V_etacap P$ to be nonempty for each $eta$, but how do we keep that up forever? In fact, our $V$-sets might disappear entirely: while at each finite stage we've stayed nonempty, but we could easily "become empty in the limit" (consider the sequence of sets $(0,1)supset(0,1over 2)supset (0,1over 3)supset ...$). The recursive construction of the $V_n$s - which is the heart of the whole proof - relies on always having a "most recent" $V$-set at each stage, that is, only considering at most $mathbbN$-many $V$-sets in total. That this is sufficient follows from the countability of $P$. As soon as we drop this, our contradiction vanishes.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 4 hours ago









Noah SchweberNoah Schweber

127k10151290




127k10151290











  • $begingroup$
    Thank you so much. I have revised my question.
    $endgroup$
    – Tengerye
    3 hours ago
















  • $begingroup$
    Thank you so much. I have revised my question.
    $endgroup$
    – Tengerye
    3 hours ago















$begingroup$
Thank you so much. I have revised my question.
$endgroup$
– Tengerye
3 hours ago




$begingroup$
Thank you so much. I have revised my question.
$endgroup$
– Tengerye
3 hours ago











0












$begingroup$

The Baire Category Theorem: If $P$ is a complete metric space and $F$ is a non-empty countable family of dense open subsets of $P$ then $cap F$ is dense in $P.$



Suppose $P$ is a non-empty closed subset of $Bbb R^n.$ Let $P$ inherit the usual metric from $Bbb R^n.$ Then $P$ is a complete metric space. Now suppose $P$ is countable and is a perfect subset of $Bbb R^n.$ Then $F=P setminus x: xin P$ is a non-empty countable family of dense open subsets of the space $P,$ so $cap F=emptyset$ is dense in $P,$ which is absurd.



(If $P$ were not assumed to be perfect then not all members of $F$ could be assumed to be dense in $P.$)



Aside: The proof of the Baire Category Theorem is direct and simple. Some students seem to be uncomfortable about this theorem, perhaps because it is unlike anything they've ever seen.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This A is unrelated to my comment to the Q regarding a subset of $P$ that's homeomorphic to the Cantor Set
    $endgroup$
    – DanielWainfleet
    1 hour ago
















0












$begingroup$

The Baire Category Theorem: If $P$ is a complete metric space and $F$ is a non-empty countable family of dense open subsets of $P$ then $cap F$ is dense in $P.$



Suppose $P$ is a non-empty closed subset of $Bbb R^n.$ Let $P$ inherit the usual metric from $Bbb R^n.$ Then $P$ is a complete metric space. Now suppose $P$ is countable and is a perfect subset of $Bbb R^n.$ Then $F=P setminus x: xin P$ is a non-empty countable family of dense open subsets of the space $P,$ so $cap F=emptyset$ is dense in $P,$ which is absurd.



(If $P$ were not assumed to be perfect then not all members of $F$ could be assumed to be dense in $P.$)



Aside: The proof of the Baire Category Theorem is direct and simple. Some students seem to be uncomfortable about this theorem, perhaps because it is unlike anything they've ever seen.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This A is unrelated to my comment to the Q regarding a subset of $P$ that's homeomorphic to the Cantor Set
    $endgroup$
    – DanielWainfleet
    1 hour ago














0












0








0





$begingroup$

The Baire Category Theorem: If $P$ is a complete metric space and $F$ is a non-empty countable family of dense open subsets of $P$ then $cap F$ is dense in $P.$



Suppose $P$ is a non-empty closed subset of $Bbb R^n.$ Let $P$ inherit the usual metric from $Bbb R^n.$ Then $P$ is a complete metric space. Now suppose $P$ is countable and is a perfect subset of $Bbb R^n.$ Then $F=P setminus x: xin P$ is a non-empty countable family of dense open subsets of the space $P,$ so $cap F=emptyset$ is dense in $P,$ which is absurd.



(If $P$ were not assumed to be perfect then not all members of $F$ could be assumed to be dense in $P.$)



Aside: The proof of the Baire Category Theorem is direct and simple. Some students seem to be uncomfortable about this theorem, perhaps because it is unlike anything they've ever seen.






share|cite|improve this answer











$endgroup$



The Baire Category Theorem: If $P$ is a complete metric space and $F$ is a non-empty countable family of dense open subsets of $P$ then $cap F$ is dense in $P.$



Suppose $P$ is a non-empty closed subset of $Bbb R^n.$ Let $P$ inherit the usual metric from $Bbb R^n.$ Then $P$ is a complete metric space. Now suppose $P$ is countable and is a perfect subset of $Bbb R^n.$ Then $F=P setminus x: xin P$ is a non-empty countable family of dense open subsets of the space $P,$ so $cap F=emptyset$ is dense in $P,$ which is absurd.



(If $P$ were not assumed to be perfect then not all members of $F$ could be assumed to be dense in $P.$)



Aside: The proof of the Baire Category Theorem is direct and simple. Some students seem to be uncomfortable about this theorem, perhaps because it is unlike anything they've ever seen.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 1 hour ago









DanielWainfleetDanielWainfleet

35.5k31648




35.5k31648











  • $begingroup$
    This A is unrelated to my comment to the Q regarding a subset of $P$ that's homeomorphic to the Cantor Set
    $endgroup$
    – DanielWainfleet
    1 hour ago

















  • $begingroup$
    This A is unrelated to my comment to the Q regarding a subset of $P$ that's homeomorphic to the Cantor Set
    $endgroup$
    – DanielWainfleet
    1 hour ago
















$begingroup$
This A is unrelated to my comment to the Q regarding a subset of $P$ that's homeomorphic to the Cantor Set
$endgroup$
– DanielWainfleet
1 hour ago





$begingroup$
This A is unrelated to my comment to the Q regarding a subset of $P$ that's homeomorphic to the Cantor Set
$endgroup$
– DanielWainfleet
1 hour ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154887%2fwalter-rudins-mathematical-analysis-theorem-2-43-why-proof-cant-work-under-t%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

152 Atala Notae | Nexus externi | Tabula navigationis"Discovery Circumstances: Numbered Minor Planets"2000152Small-Body Database

Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"