Is a bound state a stationary state?It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?

How much character growth crosses the line into breaking the character

The screen of my macbook suddenly broken down how can I do to recover

When were female captains banned from Starfleet?

Create all possible words using a set or letters

Lowest total scrabble score

Writing bit difficult equation in latex

Is it better practice to read straight from sheet music rather than memorize it?

What is this called? Old film camera viewer?

Is it safe to use olive oil to clean the ear wax?

Why did the HMS Bounty go back to a time when whales are already rare?

Why do we read the Megillah by night and by day?

Longest common substring in linear time

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed

How to explain what's wrong with this application of the chain rule?

Finding NDSolve method details

Multiplicative persistence

Travelling outside the UK without a passport

Is there a working SACD iso player for Ubuntu?

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

Is the U.S. Code copyrighted by the Government?

Yosemite Fire Rings - What to Expect?

Freedom of speech and where it applies

Problem with TransformedDistribution



Is a bound state a stationary state?


It appears that stationary states aren't so stationaryBound states, scattering states and infinite potentialsOperator in Hilbert space of a spinHelp needed to understand “On the reality of the quantum state”Trace of density matrix for mixed stateUsing the Heisenberg Uncertainty Relation to Estimate Ground State EnergiesTime Derivative of Expectation Value - Stationary StateParticle in a Box, Expansion of Energy StateStates in QM and in the algebraic approachInfinite Series vs Integral Representation of State Vectors in QM?













2












$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    5 hours ago















2












$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    5 hours ago













2












2








2





$begingroup$


In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?










share|cite|improve this question











$endgroup$




In Shankar's discussion on the 1D infinite square well in Principles of Quantum Mechanics (2nd edition), he made the following statement:




Now $langle P rangle = 0$ in any bound state for the following reason. Since a bound state is a stationary state, $langle P rangle$ is time independent. If this $langle Prangle ne 0$, the particle must (in the average sense) drift either to the right or to the left and eventually escape to infinity, which cannot happen in a bound state.




The final sentence makes sense to me, but his reasoning in the second sentence does not. Aren't bound states and stationary states entirely different things? Does the one in fact imply the other?







quantum-mechanics hilbert-space terminology definition quantum-states






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









Qmechanic

106k121961226




106k121961226










asked 5 hours ago









J-JJ-J

586




586







  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    5 hours ago












  • 2




    $begingroup$
    I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
    $endgroup$
    – DanielSank
    5 hours ago







2




2




$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
5 hours ago




$begingroup$
I find that puzzling too because I would think that a state moving around in a potential is still a bound state. I guess Shankar is just using the words in a particular way.
$endgroup$
– DanielSank
5 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




Let us now ... discuss the fact that the lowest energy is not zero...




(emphasis added by me), and the following paragraph ends with




The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



    Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




    Let us now ... discuss the fact that the lowest energy is not zero...




    (emphasis added by me), and the following paragraph ends with




    The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




    So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




    Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




    Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



      Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




      Let us now ... discuss the fact that the lowest energy is not zero...




      (emphasis added by me), and the following paragraph ends with




      The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




      So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




      Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




      Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



        Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




        Let us now ... discuss the fact that the lowest energy is not zero...




        (emphasis added by me), and the following paragraph ends with




        The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




        So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




        Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




        Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.






        share|cite|improve this answer









        $endgroup$



        I think most of us would agree that superposition of bound states — say, of an electron in an atom — still deserves to be called a bound state, even though most such superpositions are time-dependent. The electron is still bound to the atom.



        Based on the context from which the excerpt shown in the OP was extracted, it looks like Shankar is specifically talking about the ground state. The paragraph begins with




        Let us now ... discuss the fact that the lowest energy is not zero...




        (emphasis added by me), and the following paragraph ends with




        The uncertainty principle is often used in this fashion to provide a quick order-of-magnitude estimate for the ground-state energy.




        So although Shankar doesn't say it directly, the whole derivation seems to be focused on a particular stationary state, not a generic bound state. This inference is consistent with the fact that, just a few paragraphs earlier, Shankar writes




        Bound states are thus characterized by $psi(x)to 0$ [as $|x|toinfty$] ... The energy levels of bound states are always quantized.




        Shankar doesn't say that bound states always have sharply-defined energies, so none of this contradicts the usual convention that a superposition of bound states is still called a bound state, whether or not it happens to be stationary.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 5 hours ago









        Chiral AnomalyChiral Anomaly

        12.4k21541




        12.4k21541



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468307%2fis-a-bound-state-a-stationary-state%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

            Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

            Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"