Approximating irrational number to rational number$lim_ntoinfty f(2^n)$ for some very slowly increasing function $f(n)$Hermite Interpolation of $e^x$. Strange behaviour when increasing the number of derivatives at interpolating points.Newton's Method, and approximating parameters for Bézier curves.Approximating Logs and Antilogs by handApproximating fractionsExistence of Irrational Number that has same $n$ digits of a given Rational Number.Finding Irrational Approximation for a given Rational Number.Atomic weights: rational or irrational?Does there exist infinitely many $mu$ which satisfy this:Approximating functions with rational functions

Biological Blimps: Propulsion

copy and scale one figure (wheel)

Lowest total scrabble score

Are the IPv6 address space and IPv4 address space completely disjoint?

Why Shazam when there is already Superman?

Travelling outside the UK without a passport

GraphicsGrid with a Label for each Column and Row

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Problem with TransformedDistribution

How could a planet have erratic days?

Freedom of speech and where it applies

Open a doc from terminal, but not by its name

Should I stop contributing to retirement accounts?

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

Which one is correct as adjective “protruding” or “protruded”?

How do I find all files that end with a dot

Is this toilet slogan correct usage of the English language?

How to bake one texture for one mesh with multiple textures blender 2.8

How to implement a feedback to keep the DC gain at zero for this conceptual passive filter?

Where does the bonus feat in the cleric starting package come from?

Count the occurrence of each unique word in the file

Creature in Shazam mid-credits scene?

If infinitesimal transformations commute why dont the generators of the Lorentz group commute?

A social experiment. What is the worst that can happen?



Approximating irrational number to rational number


$lim_ntoinfty f(2^n)$ for some very slowly increasing function $f(n)$Hermite Interpolation of $e^x$. Strange behaviour when increasing the number of derivatives at interpolating points.Newton's Method, and approximating parameters for Bézier curves.Approximating Logs and Antilogs by handApproximating fractionsExistence of Irrational Number that has same $n$ digits of a given Rational Number.Finding Irrational Approximation for a given Rational Number.Atomic weights: rational or irrational?Does there exist infinitely many $mu$ which satisfy this:Approximating functions with rational functions













3












$begingroup$


I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    48 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    46 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    46 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    44 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    34 mins ago















3












$begingroup$


I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    48 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    46 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    46 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    44 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    34 mins ago













3












3








3





$begingroup$


I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.










share|cite|improve this question











$endgroup$




I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.







approximation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 45 mins ago









Rócherz

2,9863821




2,9863821










asked 1 hour ago









MrTanorusMrTanorus

1928




1928











  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    48 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    46 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    46 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    44 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    34 mins ago
















  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    48 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    46 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    46 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    44 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    34 mins ago















$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
48 mins ago




$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
48 mins ago




1




1




$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
46 mins ago




$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
46 mins ago




1




1




$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
46 mins ago





$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
46 mins ago













$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
44 mins ago




$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
44 mins ago












$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
34 mins ago




$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
34 mins ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    (+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
    $endgroup$
    – robjohn
    31 secs ago


















2












$begingroup$

The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
$$
0;1,1,4,2,6,1,color#C0010,143,3,dots
$$

The convergents for this continued fraction are
$$
left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
$$

As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you. A good addition to my answer.
    $endgroup$
    – Ross Millikan
    13 mins ago


















1












$begingroup$

Running the extended Euclidean algorithm to find the continued fraction:



$$beginarrayccx&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.



The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      (+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
      $endgroup$
      – robjohn
      31 secs ago















    2












    $begingroup$

    The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      (+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
      $endgroup$
      – robjohn
      31 secs ago













    2












    2








    2





    $begingroup$

    The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






    share|cite|improve this answer









    $endgroup$



    The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 40 mins ago









    Ross MillikanRoss Millikan

    300k24200374




    300k24200374











    • $begingroup$
      (+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
      $endgroup$
      – robjohn
      31 secs ago
















    • $begingroup$
      (+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
      $endgroup$
      – robjohn
      31 secs ago















    $begingroup$
    (+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
    $endgroup$
    – robjohn
    31 secs ago




    $begingroup$
    (+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
    $endgroup$
    – robjohn
    31 secs ago











    2












    $begingroup$

    The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
    $$
    0;1,1,4,2,6,1,color#C0010,143,3,dots
    $$

    The convergents for this continued fraction are
    $$
    left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
    $$

    As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thank you. A good addition to my answer.
      $endgroup$
      – Ross Millikan
      13 mins ago















    2












    $begingroup$

    The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
    $$
    0;1,1,4,2,6,1,color#C0010,143,3,dots
    $$

    The convergents for this continued fraction are
    $$
    left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
    $$

    As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thank you. A good addition to my answer.
      $endgroup$
      – Ross Millikan
      13 mins ago













    2












    2








    2





    $begingroup$

    The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
    $$
    0;1,1,4,2,6,1,color#C0010,143,3,dots
    $$

    The convergents for this continued fraction are
    $$
    left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
    $$

    As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






    share|cite|improve this answer









    $endgroup$



    The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
    $$
    0;1,1,4,2,6,1,color#C0010,143,3,dots
    $$

    The convergents for this continued fraction are
    $$
    left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
    $$

    As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 25 mins ago









    robjohnrobjohn

    269k27311638




    269k27311638











    • $begingroup$
      Thank you. A good addition to my answer.
      $endgroup$
      – Ross Millikan
      13 mins ago
















    • $begingroup$
      Thank you. A good addition to my answer.
      $endgroup$
      – Ross Millikan
      13 mins ago















    $begingroup$
    Thank you. A good addition to my answer.
    $endgroup$
    – Ross Millikan
    13 mins ago




    $begingroup$
    Thank you. A good addition to my answer.
    $endgroup$
    – Ross Millikan
    13 mins ago











    1












    $begingroup$

    Running the extended Euclidean algorithm to find the continued fraction:



    $$beginarrayccx&q&a&b\
    hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
    1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

    The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.



    The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

    If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



    Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



    It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      Running the extended Euclidean algorithm to find the continued fraction:



      $$beginarrayccx&q&a&b\
      hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
      1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

      The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.



      The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

      If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



      Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



      It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        Running the extended Euclidean algorithm to find the continued fraction:



        $$beginarrayccx&q&a&b\
        hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
        1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

        The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.



        The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

        If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



        Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



        It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






        share|cite|improve this answer









        $endgroup$



        Running the extended Euclidean algorithm to find the continued fraction:



        $$beginarrayccx&q&a&b\
        hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
        1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

        The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.



        The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

        If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



        Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



        It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 14 mins ago









        jmerryjmerry

        15.8k1632




        15.8k1632



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

            Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

            Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"