Triangulum Index Summa anguli | Area | Triangulum rectum | Triangulum aequilaterum | Nexus interni Notae | Nexus externi | Tabula navigationisDe triangulo, TheodisceDe sententia Pythagorae, Theodisce

Geometria triangulaPolygona


figura geometricaanguliAreatheorema Pythagoraetheorema altitudinistheorema Pythagoraehexagonumtesselatiodeltilus






Triangulum, tria puncta A, B, C, tres angulos α, β, γ, et tria latera a, b, c monstrans.


Triangulum[1] sive trigonum[2] seu trigonium[3] est figura geometrica plana cui sunt tria latera et tres anguli.




Index





  • 1 Summa anguli


  • 2 Area


  • 3 Triangulum rectum

    • 3.1 Theorema Pythagorae


    • 3.2 Theorema altitudinis

      • 3.2.1 Demonstratio


      • 3.2.2 Exemplum




  • 4 Triangulum aequilaterum


  • 5 Nexus interni


  • 6 Notae


  • 7 Nexus externi




Summa anguli |


Summa angulorum internorum trianguli est 180°: a + b + c = 180°



Area |


Area A trianguli datur a formula


A=12chdisplaystyle A=1 over 2,c,h

ubi c est longitudo lateris trianguli in figura supra descripta, et h est altitudo puncti C data a formula


h=bsin⁡αdisplaystyle h=b,sin alpha

Equivalenter, possumus scribere



A=12cbsin⁡α=12absin⁡γ=12acsin⁡βdisplaystyle A=1 over 2,c,b,sin alpha =1 over 2,a,b,sin gamma =1 over 2,a,c,sin beta .


Triangulum rectum |




Triangulum rectum.


Triangulum rectum seu triangulum anguli recti est triangulum cui est unus angulus rectus (i.e., 90°). Latus angulo recto contrarium dicitur hypotenusa, et alia duo latera dicuntur catheti. Quod ad triangula recta attinet, praesertim haec duo theoremata maximi momenti sunt: theorema Pythagorae et theorema altitudinis.



Theorema Pythagorae |





liber apertusDe historia: Pythagoras re vera non fuit qui primus theoremate sibi tributo usus est, namque etiam Babylonii id cognoverunt. Alii fontes dicunt Aegyptios seu Indos primos fuisse.

Si in figura prima supra adlata, angulus γ = 90°, tunc latus c est hypotenusa et latera a et c sunt catheti. Tunc theorema Pythagorae dicit


c2=a2+b2displaystyle mathbf c^2=a^2+b^2

vel explicate:


hypotenusa2=cathetus primus2+cathetus secundus2 displaystyle texthypotenusa^2=textcathetus primus^2+textcathetus secundus^2


Theorema altitudinis |




Triangulum rectum altitudinem h monstrans, et quidem punctum R et partes p et q.



liber apertusDe historia: Euclides, mathematicus Graecus (saec. IV a.C.n.), et theorema altitudinis et theorema Pythagorae in opere suo, quod de Elementis scripsit, exhibuit.

Altitudo hdisplaystyle h hypotenusam cdisplaystyle c in partes duas dividit: pdisplaystyle p sub catheto bdisplaystyle b et qdisplaystyle q sub catheto adisplaystyle a. Ergo c=p+qdisplaystyle c=p+q. Tunc theorema altitudinis dicit



h2=pqdisplaystyle h^2=pq   vel   h=pqdisplaystyle h=sqrt pq.


Demonstratio |


Theoremate Pythagorae ad triangula usi habemus


a2=q2+h2b2=p2+h2c2=a2+b2displaystyle beginarrayrcla^2&=&q^2+h^2\b^2&=&p^2+h^2\c^2&=&a^2+b^2endarray

Additis aequationibus prima et secunda habemus


a2+b2=p2+q2+2h2.displaystyle a^2+b^2=p^2+q^2+2h^2.

Et c=p+qdisplaystyle c=p+q in aequatione tertia substituendo obtinemus


a2+b2=(p+q)2=p2+2pq+q2.displaystyle a^2+b^2=(p+q)^2=p^2+2pq+q^2.

His aequationibus obtinemus


p2+q2+2h2=p2+2pq+q22h2=2pqh2=pqdisplaystyle beginarrayrclp^2+q^2+2h^2&=&p^2+2pq+q^2\2h^2&=&2pq\h^2&=&pqendarray

aut aequivalenter



h=pqdisplaystyle h=sqrt pq.

QED.



Exemplum |


Tectum creare vis quod angulum rectum habet. Si p = 4 et q = 9 pedes, quae est altitudo h?



Solutio: 4*9 = 36, et h = 6 pedes.


Triangulum aequilaterum |




Triangulum aequilaterum


Triangulum aequilaterum tres angulos aequales, tria quoque latera aequalia habet. Sex talia triangula hexagonum faciunt. Totius plani per triangula aequilatera tesselatio est deltilus.


Nexus interni


  • Trigonometria

  • Trisceles

  • Triangulum arithmeticum Pascalianum

  • Triangulus rectus praecipuus


Notae |



  1. Lewis, C.T. & Short, C. (1879). A Latin dictionary founded on Andrews' edition of Freund's Latin dictionary. Oxford: Clarendon Press.


  2. Kraus, L.A. (1844). Kritisch-etymologisches medicinisches Lexikon (Dritte Auflage). Göttingen: Verlag der Deuerlich- und Dieterichschen Buchhandlung.


  3. Saalfeld, G.A.E.A. (1884). Tensaurus Italograecus. Ausführliches historisch-kritisches Wörterbuch der Griechischen Lehn- und Fremdwörter im Lateinischen. Wien: Druck und Verlag von Carl Gerold's Sohn, Buchhändler der Kaiserl. Akademie der Wissenschaften.



Nexus externi |


  • De triangulo, Theodisce

  • De sententia Pythagorae, Theodisce



















Figurae geometricae communes

Triangulum

Parallelogrammum

Rectangulum

Quadrum

Circulus

Pyramis

Cubus

Sphaera

Nsign triangulum.JPG

Geometri parallellogram.png

Rectangle.svg

Regular quadrilateral.svg

Circle - black simple.svg

Nsign pyris.JPG

Cubic graph.svg

Sphere wireframe 10deg 6r black.svg

Popular posts from this blog

How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"