Differential and Linear trail propagation in Noekeondifferential and linear cryptanalysisDifference between linear cryptanalysis and differential cryptanalysisWhat is the complexity for attacking 3DES in linear or differential cryptanalysis?Differential CryptanalysisDifferential & linear characteristics for integer multiplicationWhat is the meaning of Maximum Expected Differential/Linear Probability (MEDP/MELP)?Understanding the wide trail design strategyit is possible to use quantum algorithm search (Grover's algorithm) for new searching strategies for differential and linear attacksLinear cryptanalysis and number of linear approximationsHow does linear vs. non-linear operations relate to cryptographic security and differential cryptanalysis?

Why are there no stars visible in cislunar space?

Unfrosted light bulb

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

Can a medieval gyroplane be built?

In what cases must I use 了 and in what cases not?

Brake pads destroying wheels

What are idioms that are antonymous to "don't skimp on"?

How to terminate ping <dest> &

In the 1924 version of The Thief of Bagdad, no character is named, right?

Usage and meaning of "up" in "...worth at least a thousand pounds up in London"

How does one measure the Fourier components of a signal?

Hausdorff dimension of the boundary of fibres of Lipschitz maps

Describing a chess game in a novel

Suggestions on how to spend Shaabath (constructively) alone

What is the term when voters “dishonestly” choose something that they do not want to choose?

Why is there so much iron?

If "dar" means "to give", what does "daros" mean?

Light propagating through a sound wave

How are passwords stolen from companies if they only store hashes?

Should I use acronyms in dialogues before telling the readers what it stands for in fiction?

Is there a term for accumulated dirt on the outside of your hands and feet?

Do US professors/group leaders only get a salary, but no group budget?

Is honey really a supersaturated solution? Does heating to un-crystalize redissolve it or melt it?

Four married couples attend a party. Each person shakes hands with every other person, except their own spouse, exactly once. How many handshakes?



Differential and Linear trail propagation in Noekeon


differential and linear cryptanalysisDifference between linear cryptanalysis and differential cryptanalysisWhat is the complexity for attacking 3DES in linear or differential cryptanalysis?Differential CryptanalysisDifferential & linear characteristics for integer multiplicationWhat is the meaning of Maximum Expected Differential/Linear Probability (MEDP/MELP)?Understanding the wide trail design strategyit is possible to use quantum algorithm search (Grover's algorithm) for new searching strategies for differential and linear attacksLinear cryptanalysis and number of linear approximationsHow does linear vs. non-linear operations relate to cryptographic security and differential cryptanalysis?













4












$begingroup$


In the Noekeon Cipher Specification they write the following :




The propagation through Lambda is denoted by $(a rightarrow A)$, also called a
step. Because of the linearity of Lambda it is fully deterministic:
both for LC and DC patterns, we have: $A = operatornameLambda(a)$. The fact that the
relation is the same for LC and DC is thanks to the fact that the
Lambda is an orthogonal function. If represented in a matrix, its
inverse is its transpose.




I'm having a hard time understanding why the orthogonality of Lambda affects the relation with regards to selection patterns (LC).



Why does the orthogonality of Lambda make it so that the relationship is the same as for DC ? How would the selection pattern propagate through the linear layer if Lambda was not orthogonal ?










share|improve this question











$endgroup$
















    4












    $begingroup$


    In the Noekeon Cipher Specification they write the following :




    The propagation through Lambda is denoted by $(a rightarrow A)$, also called a
    step. Because of the linearity of Lambda it is fully deterministic:
    both for LC and DC patterns, we have: $A = operatornameLambda(a)$. The fact that the
    relation is the same for LC and DC is thanks to the fact that the
    Lambda is an orthogonal function. If represented in a matrix, its
    inverse is its transpose.




    I'm having a hard time understanding why the orthogonality of Lambda affects the relation with regards to selection patterns (LC).



    Why does the orthogonality of Lambda make it so that the relationship is the same as for DC ? How would the selection pattern propagate through the linear layer if Lambda was not orthogonal ?










    share|improve this question











    $endgroup$














      4












      4








      4


      2



      $begingroup$


      In the Noekeon Cipher Specification they write the following :




      The propagation through Lambda is denoted by $(a rightarrow A)$, also called a
      step. Because of the linearity of Lambda it is fully deterministic:
      both for LC and DC patterns, we have: $A = operatornameLambda(a)$. The fact that the
      relation is the same for LC and DC is thanks to the fact that the
      Lambda is an orthogonal function. If represented in a matrix, its
      inverse is its transpose.




      I'm having a hard time understanding why the orthogonality of Lambda affects the relation with regards to selection patterns (LC).



      Why does the orthogonality of Lambda make it so that the relationship is the same as for DC ? How would the selection pattern propagate through the linear layer if Lambda was not orthogonal ?










      share|improve this question











      $endgroup$




      In the Noekeon Cipher Specification they write the following :




      The propagation through Lambda is denoted by $(a rightarrow A)$, also called a
      step. Because of the linearity of Lambda it is fully deterministic:
      both for LC and DC patterns, we have: $A = operatornameLambda(a)$. The fact that the
      relation is the same for LC and DC is thanks to the fact that the
      Lambda is an orthogonal function. If represented in a matrix, its
      inverse is its transpose.




      I'm having a hard time understanding why the orthogonality of Lambda affects the relation with regards to selection patterns (LC).



      Why does the orthogonality of Lambda make it so that the relationship is the same as for DC ? How would the selection pattern propagate through the linear layer if Lambda was not orthogonal ?







      cryptanalysis block-cipher linear-cryptanalysis differential-analysis






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 8 hours ago







      Yuon

















      asked 8 hours ago









      YuonYuon

      737




      737




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          This is due to the duality between linear and differential trails.
          Let $L$ be an invertible linear map on $mathbbF_2^n$, think of it as a matrix for convenience.
          In general, a nonzero differential $Delta_1 to Delta_2$ over $L$ must satisfy



          $$Delta_2 = L,Delta_1.$$



          A nonzero linear approximation $u_1 to u_2$, however, must satisfy



          $$u_2 = L^-top,u_1$$



          An elementary way to see this is to observe that $u_1^top x = u_2^top (Lx)$ is equivalent to $u_1^top x = (L^top,u_2)^top x$. This holds for all $x in mathbbF_2^n$ whenever $u_2 = L^-top,u_1$, and otherwise for half (some hyperplane) the $x$.



          If $L$ is orthogonal, then $L^-T = L$. So then we have both $Delta_2 = LDelta_1$ and $u_2 = L u_1$.






          share|improve this answer









          $endgroup$












          • $begingroup$
            I suspected it was because of something like that. Could you just give some intuition as to why we want $u^T_1 x = u^T_2(Lx)$ in first place ? If I had to come up with that, I'd think it's the other way around $u^T_2 x = u^T_1 (Lx)$ just like the differential case.
            $endgroup$
            – Yuon
            3 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "281"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68085%2fdifferential-and-linear-trail-propagation-in-noekeon%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          This is due to the duality between linear and differential trails.
          Let $L$ be an invertible linear map on $mathbbF_2^n$, think of it as a matrix for convenience.
          In general, a nonzero differential $Delta_1 to Delta_2$ over $L$ must satisfy



          $$Delta_2 = L,Delta_1.$$



          A nonzero linear approximation $u_1 to u_2$, however, must satisfy



          $$u_2 = L^-top,u_1$$



          An elementary way to see this is to observe that $u_1^top x = u_2^top (Lx)$ is equivalent to $u_1^top x = (L^top,u_2)^top x$. This holds for all $x in mathbbF_2^n$ whenever $u_2 = L^-top,u_1$, and otherwise for half (some hyperplane) the $x$.



          If $L$ is orthogonal, then $L^-T = L$. So then we have both $Delta_2 = LDelta_1$ and $u_2 = L u_1$.






          share|improve this answer









          $endgroup$












          • $begingroup$
            I suspected it was because of something like that. Could you just give some intuition as to why we want $u^T_1 x = u^T_2(Lx)$ in first place ? If I had to come up with that, I'd think it's the other way around $u^T_2 x = u^T_1 (Lx)$ just like the differential case.
            $endgroup$
            – Yuon
            3 hours ago
















          3












          $begingroup$

          This is due to the duality between linear and differential trails.
          Let $L$ be an invertible linear map on $mathbbF_2^n$, think of it as a matrix for convenience.
          In general, a nonzero differential $Delta_1 to Delta_2$ over $L$ must satisfy



          $$Delta_2 = L,Delta_1.$$



          A nonzero linear approximation $u_1 to u_2$, however, must satisfy



          $$u_2 = L^-top,u_1$$



          An elementary way to see this is to observe that $u_1^top x = u_2^top (Lx)$ is equivalent to $u_1^top x = (L^top,u_2)^top x$. This holds for all $x in mathbbF_2^n$ whenever $u_2 = L^-top,u_1$, and otherwise for half (some hyperplane) the $x$.



          If $L$ is orthogonal, then $L^-T = L$. So then we have both $Delta_2 = LDelta_1$ and $u_2 = L u_1$.






          share|improve this answer









          $endgroup$












          • $begingroup$
            I suspected it was because of something like that. Could you just give some intuition as to why we want $u^T_1 x = u^T_2(Lx)$ in first place ? If I had to come up with that, I'd think it's the other way around $u^T_2 x = u^T_1 (Lx)$ just like the differential case.
            $endgroup$
            – Yuon
            3 hours ago














          3












          3








          3





          $begingroup$

          This is due to the duality between linear and differential trails.
          Let $L$ be an invertible linear map on $mathbbF_2^n$, think of it as a matrix for convenience.
          In general, a nonzero differential $Delta_1 to Delta_2$ over $L$ must satisfy



          $$Delta_2 = L,Delta_1.$$



          A nonzero linear approximation $u_1 to u_2$, however, must satisfy



          $$u_2 = L^-top,u_1$$



          An elementary way to see this is to observe that $u_1^top x = u_2^top (Lx)$ is equivalent to $u_1^top x = (L^top,u_2)^top x$. This holds for all $x in mathbbF_2^n$ whenever $u_2 = L^-top,u_1$, and otherwise for half (some hyperplane) the $x$.



          If $L$ is orthogonal, then $L^-T = L$. So then we have both $Delta_2 = LDelta_1$ and $u_2 = L u_1$.






          share|improve this answer









          $endgroup$



          This is due to the duality between linear and differential trails.
          Let $L$ be an invertible linear map on $mathbbF_2^n$, think of it as a matrix for convenience.
          In general, a nonzero differential $Delta_1 to Delta_2$ over $L$ must satisfy



          $$Delta_2 = L,Delta_1.$$



          A nonzero linear approximation $u_1 to u_2$, however, must satisfy



          $$u_2 = L^-top,u_1$$



          An elementary way to see this is to observe that $u_1^top x = u_2^top (Lx)$ is equivalent to $u_1^top x = (L^top,u_2)^top x$. This holds for all $x in mathbbF_2^n$ whenever $u_2 = L^-top,u_1$, and otherwise for half (some hyperplane) the $x$.



          If $L$ is orthogonal, then $L^-T = L$. So then we have both $Delta_2 = LDelta_1$ and $u_2 = L u_1$.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 5 hours ago









          AlephAleph

          1,3061220




          1,3061220











          • $begingroup$
            I suspected it was because of something like that. Could you just give some intuition as to why we want $u^T_1 x = u^T_2(Lx)$ in first place ? If I had to come up with that, I'd think it's the other way around $u^T_2 x = u^T_1 (Lx)$ just like the differential case.
            $endgroup$
            – Yuon
            3 hours ago

















          • $begingroup$
            I suspected it was because of something like that. Could you just give some intuition as to why we want $u^T_1 x = u^T_2(Lx)$ in first place ? If I had to come up with that, I'd think it's the other way around $u^T_2 x = u^T_1 (Lx)$ just like the differential case.
            $endgroup$
            – Yuon
            3 hours ago
















          $begingroup$
          I suspected it was because of something like that. Could you just give some intuition as to why we want $u^T_1 x = u^T_2(Lx)$ in first place ? If I had to come up with that, I'd think it's the other way around $u^T_2 x = u^T_1 (Lx)$ just like the differential case.
          $endgroup$
          – Yuon
          3 hours ago





          $begingroup$
          I suspected it was because of something like that. Could you just give some intuition as to why we want $u^T_1 x = u^T_2(Lx)$ in first place ? If I had to come up with that, I'd think it's the other way around $u^T_2 x = u^T_1 (Lx)$ just like the differential case.
          $endgroup$
          – Yuon
          3 hours ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cryptography Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68085%2fdifferential-and-linear-trail-propagation-in-noekeon%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I use the fbox command correctly to avoid producing a Bad Box message?How to put a long piece of text in a box?How to specify height and width of fboxIs there an arrayrulecolor-like command to change the rule color of fbox?What is the command to highlight bad boxes in pdf?Why does fbox sometimes place the box *over* the graphic image?how to put the text in the boxHow to create command for a box where text inside the box can automatically adjust?how can I make an fbox like command with certain color, shape and width of border?how to use fbox in align modeFbox increase the spacing between the box and it content (inner margin)how to change the box height of an equationWhat is the use of the hbox in a newcommand command?

          Tender dossier with centered articlesHow can I get legal style indentation on section, subsection, subsubsec.. using titlesec?missing item with addtocontents before sectionsubsubsubsection, paragraph and subparagraph count not reset when starting a new section, subsection, etcTikZ won't support HSB color model hsb in article document classAdding a vskip1em before each section - won't compile with itHow to implement a customized hierarchical table of content using titletoc with changing number formatsSection title formatGrouped entries in index don't spill over to next columnParagraph spacing in documentclassarticle with Figure and ListingsRagged Right Index Entries

          Doxepinum Nexus interni Notae | Tabula navigationis3158DB01142WHOa682390"Structural Analysis of the Histamine H1 Receptor""Transdermal and Topical Drug Administration in the Treatment of Pain""Antidepressants as antipruritic agents: A review"